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This course will cover the representation theory of finite groups over C. We
assume the reader knows the basic properties of groups and vector spaces.
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1 Representations

1.1 Representations as matrices

Informally, a representation of a group is a way of writing it down as a
group of matrices.

Example 1.1.1. Consider C4 (a.k.a. Z/4), the cyclic group of order 4:

C4 = {e, µ, µ2, µ3}
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where µ4 = e (we’ll always denote the identity element of a group by e).
Consider the matrices

I =

(
1 0
0 1

)
M =

(
0 −1
1 0

)
M2 =

(
−1 0
0 −1

)
M3 =

(
0 1
−1 0

)

Notice that M4 = I. These 4 matrices form a subgroup of GL2(R) - the
group of all 2 × 2 invertible matrices with real coefficients under matrix
multiplication. This subgroup is isomorphic to C4, the isomorphism is

µ 7→M

(so µ2 7→M2, µ3 7→M3, e 7→ I).

Example 1.1.2. Consider the group C2 × C2 (the Klein-four group) gener-
ated by σ, τ such that

σ2 = τ 2 = e

στ = τσ

Here’s a representation of this group:

σ 7→S =

(
1 −2
0 −1

)
τ 7→T =

(
−1 2
0 1

)
To check that this is a representation, we need to check the relations:

S2 =

(
1 0
0 1

)
= T 2

ST =

(
−1 0
0 −1

)
= TS

So S and T generate a subgroup of GL2(R) which is isomorphic to C2 ×C2.
Let’s try and simplify by diagonalising S. The eigenvalues of S are ±1, and
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the eigenvectors are (
1
0

)
7→
(

1
0

)
(λ1 = 1)(

1
1

)
7→
(
−1
−1

)
(λ2 = −1)

So if we let

P =

(
1 1
0 1

)
, Ŝ =

(
1 0
0 −1

)
Then

P−1SP = Ŝ

Now let’s diagonalise T : the eigenvalues are ±1, and the eigenvectors are(
1
0

)
7→ −

(
1
0

)
(λ1 = −1)(

1
1

)
7→
(

1
1

)
(λ2 = 1)

Notice T and S have the same eigenvectors! Coincidence? Of course not, as
we’ll see later. So if

T̂ =

(
−1 0
0 1

)
Then P−1TP = T̂ .

Claim. Ŝ and T̂ form a new representation of C2 × C2

Proof.

Ŝ2 = P−1S2P = P−1P = I

T̂ 2 = P−1T 2P = P−1P = I

ŜT̂ = P−1STP = P−1TSP = T̂ Ŝ

Hence, this forms a representation.

This new representation is easier to work with because all the matrices are
diagonal, but it carries the same information as the one using S and T . We
say the two representations are equivalent.
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Can we diagonalise the representation from Example 1.1.1? The eigenvalues
of M are ±i, so M cannot be diagonalised over R, but it can be diagonalized
over C. So ∃P ∈ GL2(C) such that

P−1MP = M̂ =

(
i 0
0 −i

)
and µ 7→ M̂ defines a representation of C4 that is equivalent to µ 7→ M . As
this example shows, it’s easier to work over C.

Definition 1.1.3 (First version). Let G be a group. A representation of
G is a homomorphism

ρ : G→ GLn(C)

for some number n.

The number n is called the dimension (or the degree) of the representation.
It is also possible to work over other fields (R,Q,Fp, etc.) but we’ll stick to
C. We’ll also always assume that our groups are finite.

There’s an important point to notice here: by definition, a representation
ρ is a homomorphism, it is not just the image of that homomorphism. In
particular we don’t necessarily assume that ρ is an injection, i.e. the image
of ρ doesn’t have to be isomorphic to G.

If ρ is an injection, then we say that the representation is faithful. In
our previous two examples, all the representations were faithful. Here’s an
example of a non-faithful representation:

Example 1.1.4. Let G = C6 = 〈µ | µ6 = e〉. Let n = 1. GL1(C) is the
group of non-zero complex numbers (under multiplication). Define

ρ : G→ GL1(C)

ρ : µ 7→ e
2πi
3

so ρ(µk) = e
2πik
3 . We check ρ(µ)6 = 1, so this is a well-defined representation

of C6. But ρ(µ3) = 1 also, so

• the kernel of ρ is {e, µ3}.
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• the image of ρ is
{

1, e
2πi
3 , e

4πi
3

}
, which is isomorphic to C3.

Example 1.1.5. Let G be any group, and n be any number. Define

ρ : G→ GLn(C)

by
ρ : g 7→ In ∀ g ∈ G

This is a representation, as

ρ(g)ρ(h) = InIn = In = ρ(gh)

This is known as the trivial representation of G (of dimension n). The
kernel is equal to G, and the image is the subgroup {In} ⊂ GLn, which is
isomorphic to the trivial group.

Let P be any invertible matrix. The map ‘conjugate by P ’

cP : GLn(C)→ GLn(C)

given by
cP : M 7→ P−1MP

is a homomorphism. So if

ρ : G→ GLn(C)

is a homomorphism, then so is cP ◦ρ (because composition of homomorphisms
is a homomorphism).

Definition 1.1.6. Two representations of G

ρ1 : G→ GLn(C) ρ2 : G→ GLn(C)

are equivalent if ∃P ∈ GLn(C) such that ρ2 = cP ◦ ρ1.

Equivalent representations really are ‘the same’ in some sense. To understand
this, we have to stop thinking about matrices, and start thinking about linear
maps.
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1.2 Representations as linear maps

Let V be an n-dimensional vector space. The set of all invertible linear maps
from V to V form a group which we call GL(V ).

If we pick a basis of V then every linear map corresponds to a matrix (see
Corollary A.3.2), so we get an isomorphism GL(V ) ∼= GLn(C). However,
this isomorphism depends on which basis we chose, and often we don’t want
to choose a basis at all.

Definition 1.2.1 (Second draft of Definition 1.1.3). A representation of
a group G is a choice of a vector space V and a homomorphism

ρ : G→ GL(V )

If we pick a basis of V , we get a representation in the previous sense. If we
need to distinguish between these two definitions, we’ll call a representation
in the sense of Definition 1.1.3 a matrix representation.

Notice that if we set the vector space V to be Cn then GL(V ) is exactly the
same thing as GLn(C). So if we have a matrix representation, then we can
think of it as a representation (in our new sense) acting on the vector space
Cn.

Lemma 1.2.2. Let ρ : G → GL(V ) be a representation of a group G. Let
A = {a1, . . . , an} and B = {b1, . . . , bn} be two bases for V . Then the two
associated matrix representations

ρA : G→ GLn(C)

ρB : G→ GLn(C)

are equivalent.

Proof. For each g ∈ G we have a linear map ρ(g) ∈ GL(V ). Writing this
linear map with respect to the basis A gives us the matrix ρA(g), and writing
it with respect to the basis B gives us the matrix ρB(g). Then by Corollary
A.3.2 we have

ρB(g) = P−1ρA(g)P
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where P is the change-of-basis matrix between A and B. This is true for all
g ∈ G, so

ρB = cP ◦ ρA

Conversely, suppose ρ1 and ρ2 are equivalent matrix representations of G,
and let P be the matrix such that ρ2 = cP ◦ ρ1. If we set V to be the vector
space Cn then we can think of ρ1 as a representation

ρ1 : G→ GL(V )

Now let C ⊂ Cn be the basis consisting of the columns of the matrix P , so P
is the change-of-basis matrix between the standard basis and C (see Section
A.3). For each group element g, if we write down the linear map ρ1(g) using
the basis C then we get the matrix

P−1ρ1(g)P = ρ2(g)

So we can view ρ2 as the matrix representation that we get when we take ρ1
and write it down using the basis C.

MORAL: Two matrix representations are equivalent if and only if they de-
scribe the same representation in different bases.

1.3 Constructing representations

Recall that the symmetric group Sn is defined to be the set of all permutations
of a set of n symbols. Suppose we have a subgroup G ⊂ Sn. Then we can
write down an n-dimensional representation of G, called the permutation
representation. Here’s how:

Let V be an n-dimensional vector space with a basis {b1, . . . , bn}. Every
element g ∈ G is a permutation of the set {1, . . . , n} (or, if you prefer, it’s a
permutation of the set {b1, . . . , bn}). Define a linear map

ρ(g) : V → V

8



by definining
ρ(g) : bk 7→ bg(k)

and extending this to a linear map. Now

ρ(g) ◦ ρ(h) : bk 7→ bgh(k)

so
ρ(g) ◦ ρ(h) = ρ(gh)

(since they agree on a basis). Therefore

ρ : G→ GL(V )

is a homomorphism.

Example 1.3.1. Let G = {(1), (123), (132)} ⊂ S3. G is a subgroup, and it’s
isomorphic to C3. Let V = C3 with the standard basis. The permutation
representation of G (written in the standard basis) is

ρ((1)) =

1 0 0
0 1 0
0 0 1


ρ((123)) =

0 0 1
1 0 0
0 1 0


ρ((132)) =

0 1 0
0 0 1
1 0 0


[Aside: the definition of a permutation representation works over any field.]

But remember Cayley’s Theorem! Every group of size n is a subgroup of the
symmetric group Sn.

Proof. Think about the set of elements of G as abstract set G of n symbols.
Left multiplication by g ∈ G defines a bijection

Lg : G → G
Lg : h 7→ gh
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and a bijection from a set of size n to itself is exactly a permutation. So we
have a map

G→ Sn

defined by
g → Lg

This is in fact an injective homomorphism, so its image is a subgroup of Sn
which is isomorphic to G.

So for any group of size n we automatically get an n-dimensional repre-
sentation of G. This is called the regular representation, and it’s very
important.

Example 1.3.2. Let G = C2 × C2 = {e, σ, τ, στ} where σ2 = τ 2 = e and
τσ = στ . Left multiplication by σ gives a permutation

Lσ :G → G
e 7→ σ

σ 7→ e

τ 7→ στ

στ 7→ τ

Let V be the vector space with basis {be, bσ, bτ , bστ}. The regular represen-
tation of G is a homomorphism

ρreg : G→ GL(V )

With respect to the given basis of V , ρreg(σ) is the matrix

ρreg(σ) =


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0


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The other two non-identity elements go to

ρreg(τ) =


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0



ρreg(στ) =


0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0


The next lemma is completely trivial to prove, but worth writing down:

Lemma 1.3.3. Let G be a group and let H ⊂ G be a subgroup. Let

ρ : G→ GL(V )

be a representation of G. Then the restriction of ρ to H

ρ|H : H → GL(V )

is a representation of H.

Proof. Immediate.

We saw an example of this earlier: for the group Sn we constructed an n-
dimensional permutation representation, then for any subgroup H ⊂ Sn we
considered the restriction of this permutation representation to H.

Slightly more generally:

Lemma 1.3.4. Let G and H be two groups, let

f : H → G

be a homomorphism, and let ρ : G→ GL(V ) be a representation of G. Then

ρ ◦ f : H → GL(V )

is a representation of H.
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Proof. A composition of homomorphisms is a homomorphism.

Lemma 1.3.3 is a special case of this, where we let f : H ↪→ G be the inclusion
of a subgroup.

Example 1.3.5. Let H = C6 = 〈µ|µ6 = e〉 and let G = C3 = 〈ν|ν3 = e〉.
Let f : H → G be the homomorphism sending µ to ν. There’s a faithful
1-dimensional representation of C3 defined by

ρ : G→ GL1(C)

ρ : ν → e
2πi
3

Then ρ ◦ f is the non-faithful representation of C6 that we looked at in
Example 1.1.4.

Example 1.3.6. Let G = C2 = 〈µ|µ2 = e〉, and let H = Sn for some n.
Recall that there is a homomorphism

sgn : Sn → C2

sgn(σ) =

{
e if σ is an even permutation
µ if σ is an odd permutation

There’s a 1-dimensional representation of C2 given by

ρ : C2 → GL1(C)

ρ : µ→ −1

(this is a representation, because (−1)2 = 1). Composing this with sgn, we
get a 1-dimensional representation of Sn, which sends each even permutation
to 1, and each odd permutation to −1. This is called the sign representa-
tion of Sn.

Finally, for some groups we can construct representations using geometry.

Example 1.3.7. D4 is the symmetry group of a square. It has size 8, and
consists of 4 reflections and 4 rotations. Draw a square in the plane with
vertices at (1, 1), (1,−1), (−1,−1) and (−1, 1). Then the elements of D4

naturally become linear maps acting on a 2-dimensional vector space. Using
the standard basis, we get the matrices:
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• rotate by π
2
:

(
0 −1
1 0

)

• rotate by π:

(
−1 0
0 −1

)

• rotate by 3π
2

:

(
0 1
−1 0

)

• reflect in x-axis:

(
1 0
0 −1

)

• reflect in y-axis:

(
−1 0
0 1

)

• reflect in y = x:

(
0 1
1 0

)

• reflect in y = −x:

(
0 −1
−1 0

)

Together with I2, these matrices give a 2-dimensional representation of D4.

1.4 G-linear maps and subrepresentations

You should have noticed that whenever you meet a new kind of mathemati-
cal object, soon afterwards you meet the ‘important’ functions between the
objects. For example:

Objects Functions
Groups Homomorphisms

Vector spaces Linear maps
Topological spaces Continuous maps

Rings Ring Homomorphisms
...

...

So we need to define the important functions between representations.
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Definition 1.4.1. Let

ρ1 : G→ GL(V )

ρ2 : G→ GL(W )

be two representations of G on vector spaces V and W . A G-linear map
between ρ1 and ρ2 is a linear map f : V → W such that

f ◦ ρ1(g) = ρ2(g) ◦ f ∀ g ∈ G

i.e. both ways round the square

V V

W W

ρ1(g)

f f

ρ2(g)

give the same answer (‘the square commutes’).

So a G-linear map is a special kind of linear map that respects the group
actions. For any linear map, we have

f(λx) = λf(x)

for all λ ∈ C and x ∈ V , i.e. we can pull scalars through f . For G-linear
maps, we also have

f(ρ1(g)(x)) = ρ2(g)(f(x))

for all g ∈ G, i.e. we can also pull group elements through f .

Suppose f is a G-linear map, and suppose as well that f is an isomorphism
between the vector spaces V and W , i.e. there is an inverse linear map

f−1 : W → V

such that f ◦ f−1 = 1W and f−1 ◦ f = 1V (recall that f has an inverse iff f
is a bijection).

Claim 1.4.2. f−1 is also a G-linear map.
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In this case, we say f is a (G-linear) isomorphism and that the two repre-
sentations ρ1 and ρ2 are isomorphic. Isomorphism is really the same thing
as equivalence.

Proposition 1.4.3. Let V and W be two vector spaces, both of dimension
n. Let

ρ1 : G→ GL(V )

ρ2 : G→ GL(W )

be two representations of G. Let A = {a1, . . . , an} be a basis for V , and let
B = {b1, . . . , bn} be a basis for W , and let

ρA1 : G→ GLn(C)

ρB2 : G→ GLn(C)

be the matrix representations obtained by writing ρ1 and ρ2 in these bases.
Then ρ1 and ρ2 are isomorphic if and only if ρA1 and ρB2 are equivalent.

Proof. (⇒) Let f : V → W be a G-linear isomorphism. Then

fA = {f(a1), . . . , f(an)} ⊂ W

is a second basis for W . Let ρfA2 be the matrix representation obtained by
writing down ρ2 in this new basis. Pick g ∈ G and let ρA1 (g) = M , i.e.

ρ1(g)(ak) =
n∑
i=1

Mikai

(see Section A.2). Then by the G-linearity of f ,

ρ2(g)(f(ak)) = f(ρ1(g)(ak))

=
n∑
i=1

Mikf(ai)

So the matrix describing ρ2(g) in the basis fA is the matrix M , i.e. it is
the same as the matrix describing ρ1(g) in the basis A. This is true for all
g ∈ G, so the two matrix representations ρA1 and ρfA2 are identical. But by
Lemma 1.2.2, ρfA2 is equivalent to ρB2 .
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(⇐) Let P be the matrix such that

ρB2 = cP ◦ ρA1

Let
f : V → W

be the linear map represented by the matrix P−1 with respect to the bases
A and B. Then f is an isomorphism of vector spaces, because P−1 is an
invertible matrix. We need to show that f is also G-linear, i.e. that

f ◦ ρ1(g) = ρ2(g) ◦ f, ∀g ∈ G

Using our given bases we can write each of these linear maps as matrices,
then this equation becomes

P−1ρA1 (g) = ρB2 (g)P−1, ∀g ∈ G

or equivalently
ρB2 (g) = P−1ρA1 (g)P, ∀g ∈ G

and this is true by the definition of P .

Of course, not every G-linear map is an isomorphism.

Example 1.4.4. Let G = C2 = 〈τ | τ 2 = e〉. The regular representation of
G, written in the natural basis, is ρreg(e) = I2 and

ρreg(τ) =

(
0 1
1 0

)
(since multiplication by τ transposes the two group elements). Let ρ1 be the
1-dimensional representation

ρ1 : C2 → GL1(C)

τ 7→ −1

from Example 1.3.6. Now let f : C2 → C be the linear map represented by
the matrix (1,−1) with respect to the standard bases. Then for any vector
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x =

(
x1
x2

)
∈ C2, we have

f ◦ ρreg(τ)(x) = (1,−1)

(
0 1
1 0

)(
x1
x2

)
= −(1,−1)

(
x1
x2

)
= ρ1(τ) ◦ f(x)

So f is a G-linear map from ρreg to ρ1.

Example 1.4.5. Let G be a subgroup of Sn. Let (V, ρ1) be the permu-
tation representation, i.e. V is an n-dimensional vector space with a basis
{b1, . . . , bn}, and

ρ1 : G→ GL(V )

ρ1(g) : bk 7→ bg(k)

Let W = C, and let
ρ2 : G→ GL(W ) = GL(C)

be the (1-dimensional) trivial representation, i.e. ρ2(g) = 1∀g ∈ G. Let
f : V → W be the linear map defined by

f(bk) = 1 ∀ k

We claim that this is G-linear. We need to check that

f ◦ ρ1(g) = ρ2(g) ◦ f ∀g ∈ G

It suffices to check this on the basis of V . We have:

f(ρ1(g)(bk)) = f(bg(k)) = 1

and
ρ2(g)(f(bk)) = ρ2(g)(1) = 1

for all g and k, so f is indeed G-linear.

Definition 1.4.6. A subrepresentation of a representation

ρ : G→ GL(V )

is a vector subspace W ⊂ V such that

ρ(g)(x) ∈ W ∀ g ∈ G and x ∈ W
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This means that every ρ(g) defines a linear map from W to W , i.e. we have
a representation of G on the subspace W .

Example 1.4.7. Let G = C2 and V = C2 with the regular representation
as in Example 1.4.4. Let W be the 1-dimensional subspace spanned by the

vector

(
1
1

)
∈ V . Then

ρreg(τ)

(
1
1

)
=

(
0 1
1 0

)(
1
1

)
=

(
1
1

)

So ρreg(τ)

(
λ
λ

)
=

(
λ
λ

)
, i.e. ρreg(τ) preserves W , so W is a subrepresentation.

It’s isomorphic to the trivial (1-dimensional) representation.

Example 1.4.8. We can generalise the previous example. Suppose we have
a matrix representation ρ : G→ GLn(C). Now suppose we can find a vector
x ∈ Cn which is an eigenvector for every matrix ρ(g), g ∈ G, i.e.

ρ(g)(x) = λgx for some eigenvalues λg ∈ C∗

Then the span of x is a 1-dimensional subspace 〈x〉 ⊂ Cn, and it’s a subrep-
resentation. It’s isomorphic to the 1-dimensional matrix representation

ρ : G→ GL1(C)

ρ : g 7→ λg

Any linear map f : V → W has a kernel Ker(f) ⊆ V and an image Im(f) ⊆
W which are both vector subspaces.

Claim 1.4.9. If f is a G-linear map between the two representations

ρ1 : G→ GL(V )

ρ2 : G→ GL(W )

Then Ker(f) is a subrepresentation of V and Im(f) is a subrepresentation
of W .

Look back at Examples 1.4.4 and 1.4.7. The kernel of the map f is the
subrepresentation W .
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1.5 Maschke’s theorem

Let V and W be two vector spaces. Recall the definition of the direct sum

V ⊕W

It’s the vector space of all pairs (x, y) such that x ∈ V and y ∈ W . Its
dimension is dimV + dimW .

Suppose G is a group, and we have representations

ρV : G→ GL(V )

ρW : G→ GL(W )

Then there is a natural representation of G on V ⊕ W given by ‘direct-
summing’ ρV and ρW . The definition is

ρV⊕W : G→ GL(V ⊕W )

ρV⊕W (g) : (x, y) 7→ (ρV (g)(x), ρW (g)(y))

Claim 1.5.1. For each g, ρV⊕W (g) is a linear map, and ρV⊕W is indeed a
homomorphism from G to GL(V ⊕W ).

Pick a basis {a1, . . . , an} for V , and {b1, . . . , bm} for W . Suppose that in
these bases, ρV (g) is the matrix M and ρW (g) is the matrix N . The set

{(a1, 0), . . . , (an, 0), (0, b1), . . . , (0, bm)}

is a basis for V ⊕W , and in this basis the linear map ρV⊕W (g) is given by
the (n+m)× (n+m) matrix (

M 0
0 N

)
A matrix like this is called block-diagonal.

Consider the linear map

ιV : V → V ⊕W
ιV : x 7→ (x, 0)
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It’s an injection, so it’s an isomorphism between V and Im(ιV ). So we can
think of V as a subspace of V ⊕W . Also

ιV (ρV (g)(x)) = (ρV (g)(x), 0)

= ρV⊕W (g)(x, 0)

So ιV is G-linear, and Im(ιV ) is a subrepresentation which we can identify
with V . Similarly, the subspace {(0, y), y ∈ W} ⊂ V ⊕W is a subrepresen-
tation, and it’s isomorphic to W . The intersection of these two subrepresen-
tations is obviously {0}.

Conversely:

Proposition 1.5.2. Let ρ : G→ GL(V ) be a representation, and let W ⊂ V
and U ⊂ V be subrepresentations such that

i) U ∩W = {0}

ii) dimU + dimW = dimV

Then V is isomorphic to W ⊕ U .

Proof. You should recall that we can identify V with W⊕U as vector spaces,
because every vector in V can be written uniquely as a sum x+y with x ∈ W
and y ∈ U . In other words, the map

f : W ⊕ U → V

f : (x, y) 7→ x+ y

is an isomorphism of vector spaces. We claim that f is also G-linear. Let’s
write

ρW : G→ GL(W ), ρU : G→ GL(U)

for the representations of G on W and U , note that by definition we have

ρW (g)(x) = ρV (g)(x), ∀x ∈ W

and
ρU(g)(y) = ρV (g)(y), ∀y ∈ U
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Then the following square commutes:

(x, y) � ρW⊕U (g) //
_

f

��

(ρW (g)(x), ρU(g)(y))
_

f

��
x+ y � ρV (g) // ρV (g)(x+ y) = ρV (g)(x) + ρV (g)(y)

So f is indeed G-linear, and hence it’s an isomorphism of representations.

Now suppose ρ : G→ GL(V ) is a representation, and W ⊂ V is a subrepre-
sentation. Given the previous proposition, it is natural to ask the following:

Question 1.5.3. Can we find another subrepresentation U ⊂ V such that
U ∩W = {0} and dimV = dimW + dimU?

If we can, then we can split V up as a direct sum

V = W ⊕ U

Such a U is called a complementary subrepresentation to W .

It turns out the answer to this question is always yes! This is called Maschke’s
Theorem. It’s the most important theorem in the course, but fortunately
the proof isn’t too hard.

Example 1.5.4. Recall Examples 1.4.4 and 1.4.7. We setG = C2, and V was
the regular representation. We found a (1 dimensional) subrepresentation

W =

〈(
1
1

)〉
⊂ C2 = V

Can we find a complementary subrepresentation? Let

U =

〈(
1
−1

)〉
⊂ C2 = V

Then

ρreg(τ)

(
1
−1

)
=

(
0 1
1 0

)(
1
−1

)
= −

(
1
−1

)
So U is a subrepresentation, and it’s isomorphic to ρ1. Furthermore, V =
W ⊕ U because W ∩ U = 0 and dimU + dimW = 2 = dimV .
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To prove Maschke’s Theorem, we need the following:

Lemma 1.5.5. Let V be a vector space, and let W ⊂ V be a subspace.
Suppose we have a linear map

f : V → W

such that f(x) = x for all x ∈ W . Then Ker(f) ⊂ V is a complementary
subspace to W , i.e.

V = W ⊕Ker(f)

Proof. If x ∈ Ker(f) ∩W then f(x) = x = 0, so Ker(f) ∩W = 0. Also, f is
a surjection, so by the Rank-Nullity Theorem,

dim Ker(f) + dimW = dimV

A linear map like this is called a projection. For example, suppose that
V = W ⊕ U , and let πW be the linear map

πW : V → W

(x, y) 7→ x

Then πW is a projection, and Ker(πW ) = U . The above lemma says that
every projection looks like this.

Corollary 1.5.6. Let ρ : G → GL(V ) be a representation , and W ⊂ V a
subrepresentation. Suppose we have a G-linear projection

f : V → W

Then Ker(f) is a complementary subrepresentation to W .

Proof. This is immediate from the previous lemma.

Theorem 1.5.7 (Maschke’s Theorem). Let ρ : G → GL(V ) be a represen-
tation, and let W ⊂ V be a subrepresentation. Then there exists a comple-
mentary subrepresentation U ⊂ V to W .
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Proof. By Corollary 1.5.6, it’s enough to find a G-linear projection from V to
W . Recall that we can always find a complementary subspace (not subrepre-
sentation!) Ũ ⊂ V to W . For example, we can pick a basis {b1, . . . , bm}
for W , then extend it to a basis {b1, . . . , bm, bm+1, . . . , bn} for V and let
Ũ = 〈bm+1, ..., bn〉. Let

f̃ : V = W ⊕ Ũ → W

be the projection with kernel Ũ . There is no reason why f̃ should be G-linear.
However, we can do a clever modification. Let’s define

f : V → V

by

f(x) =
1

|G|
∑
g∈G

(ρ(g) ◦ f̃ ◦ ρ(g−1))(x)

Then we claim that f is a G-linear projection from V to W .

First let’s check that Im f ⊂ W . For any x ∈ V and g ∈ G we have

f̃(ρ(g−1)(x)) ∈ W

and so
ρ(g)(f̃(ρ(g−1)(x))) ∈ W

since W is a subrepresentation. Therefore f(x) ∈ W as well.

Next we check that f is a projection. Let y ∈ W . Then for any g ∈ G, we
know that ρ(g−1)(y) is also in W , so

f̃(ρ(g−1)(y)) = ρ(g−1(y))
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Therefore

f(y) =
1

|G|
∑
g∈G

ρ(g)(f̃(ρ(g−1)(y)))

=
1

|G|
∑
g∈G

ρ(g)(ρ(g−1)(y))

=
1

|G|
∑
g∈G

ρ(gg−1)(y)

=
1

|G|
∑
g∈G

ρ(e)(y)

=
|G|y
|G|

= y

So f is indeed a projection. Finally, we check that f is G-linear. For any
x ∈ V and any h ∈ G, we have

f(ρ(h)(x)) =
1

|G|
∑
g∈G

(ρ(g) ◦ f̃ ◦ ρ(g−1) ◦ ρ(h))(x)

=
1

|G|
∑
g∈G

(ρ(g) ◦ f̃ ◦ ρ(g−1h))(x)

=
1

|G|
∑
g∈G

ρ(hg) ◦ f̃ ◦ ρ(g−1))(y)

= (ρ(h) ◦ f)(x)

(the sums on the second and third lines are the same, we’ve just rela-
belled/permuted the group elements appearing in the sum, sending g 7→ hg).
So f is indeed G-linear.

So if V contains a subrepresentation W , then we can split V up as a direct
sum.

Definition 1.5.8. If ρ : G → GL(V ) is a representation with no subrep-
resentations (apart from the trivial subrepresentations 0 ⊂ V and V ⊆ V )
then we call it an irreducible representation.
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The real power of Maschke’s Theorem is the following Corollary:

Corollary 1.5.9. Every representation can be written as a direct sum

U1 ⊕ U2 ⊕ . . .⊕ Ur

of subrepresentations, where each Ui is irreducible.

Proof. Let V be a representation of G, of dimension n. If V is irreducible,
we’re done. If not, V contains a subrepresentation W ⊂ V , and by Maschke’s
Theorem,

V = W ⊕ U

for some other subrepresentation U . Both W and U have dimension less
than n. If they’re both irreducible, we’re done. If not, one of them contains
a subrepresentation, so it splits as a direct sum of smaller subrepresentations.
Since n is finite, this process will terminate in a finite number of steps.

So every representation is built up from irreducible representations in a
straight-forward way. This makes irreducible representations very impor-
tant, so we abbreviate the name and call them irreps. They’re like the
‘prime numbers’ of representation theory.

Obviously, any 1-dimensional representation is irreducible. Here is a 2-
dimensional irrep:

Example 1.5.10. Let G = S3, it’s generated by

σ = (123) τ = (12)

with relations
σ3 = τ 2 = e, τστ = σ−1

Let

ρ(σ) =

(
ω 0
0 ω−1

)
ρ(τ) =

(
0 1
1 0

)
where ω = e

2πi
3 . This defines a representation of G (either check the relations,

or do the Problem Sheets). Let’s show that ρ is irreducible. Suppose (for a
contradiction) that W is a non-trivial subrepresentation. Then dimW = 1.

25



Also, W is preserved by the action of ρ(σ) and ρ(τ), i.e. W is an eigenspace
for both matrices. The eigenvectors of ρ(τ) are(

1
1

)
(λ1 = 1)(

1
−1

)
(λ2 = −1)

But the eigenvectors of ρ(σ) are(
1
0

)
&

(
0
1

)
So there is no such W .

Now let’s see some examples of Maschke’s Theorem in action:

Example 1.5.11. The regular representation of C3 = 〈µ|µ3 = 3〉 is

ρreg(µ) =

0 0 1
1 0 0
0 1 0


(c.f. Example 1.3.1). Suppose x ∈ C3 is an eigenvector of ρreg(µ). Then it’s
also an eigenvector of ρreg(µ

2), so 〈x〉 ⊂ C3 is a 1-dimensional subrepresen-
tation. The eigenvectors of ρreg(µ) are1

1
1

(λ1 = 1)

 1
ω−1

ω

(λ2 = ω)

 1
ω
ω−1

(λ3 = ω−1)

So ρreg is the direct sum of 3 1-dimensional irreps:

U1 =

〈1
1
1

〉 U2 =

〈 1
ω−1

ω

〉 U3 =

〈 1
ω
ω−1

〉

In the eigenvector basis,

ρreg(µ) =

1 0 0
0 ω 0
0 0 ω−1


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Look back at Examples 1.1.1, 1.1.2 and 1.5.4. In each one we took a matrix
representation and found a basis in which every matrix became diagonal, i.e.
we split each representation as a direct sum of 1-dimensional irreps.

Proposition 1.5.12. Let ρ : G→ GLn(C) be a matrix representation. Then
there exists a basis of Cn in which every matrix ρ(g) is diagonal iff ρ is a
direct sum of 1-dimensional irreps.

Proof. (⇒) Let {x1, . . . ,xn} be such a basis. Then xi is an eigenvector for
every ρ(g), so 〈xi〉 is a 1-dimensional subrepresentation, and

Cn = 〈x1〉 ⊕ 〈x2〉 ⊕ . . .⊕ 〈xn〉

(⇐) Suppose Cn = U1 ⊕ . . . ⊕ Un with each Ui a 1-dimensional subrepre-
sentation. Pick a (non-zero) vector xi from each Ui. Then {x1, . . . ,xn} is a
basis for Cn. For any g ∈ G, the matrix ρ(g) preserves 〈xi〉 = Ui for all i, so
ρ(g) is a diagonal matrix with respect to this basis.

We will see soon that if G is abelian, every representation of G splits as a
direct sum of 1-dimensional irreps. When G is not abelian, this is not true.

Example 1.5.13. Let
ρ : S3 → GL3(C)

be the permutation representation (in the natural basis). Recall S3 is gener-
ated by σ = (123), τ = (12). We have

ρ(σ) =

0 0 1
1 0 0
0 1 0

 ρ(τ) =

0 1 0
1 0 0
0 0 1


Notice that

x1 =

1
1
1


is an eigenvector for both ρ(σ) and ρ(τ). Therefore, it’s an eigenvector for
ρ(σ2), ρ(στ) and ρ(σ2τ) as well, so U1 = 〈x1〉 is a 1-dimensional subrepresen-
tation. It’s isomorphic to the 1-dimensional trivial representation. Let

U2 =

〈
x2 =

 1
−1
0

 , x3 =

 0
1
−1

〉
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Clearly, C3 = U1⊕U2 as a vector space. We claim U2 is a subrepresentation.
We check:

ρ(σ) : x2 7→ x3 ∈ U2

x3 7→ −x2 − x3 ∈ U2

ρ(τ) : x2 7→ −x2 ∈ U2

x3 7→ x2 + x3 ∈ U2

In this basis, U2 is the matrix representation

ρ2(σ) =

(
0 −1
1 −1

)
, ρ(τ) =

(
−1 1
0 1

)
So ρ is the direct sum of two subrepresentations U1 ⊕ U2. In the basis
{x1,x2,x3} for C3, ρ becomes the (block-diagonal) matrix representation

ρ(σ) =

1 0 0
0 0 −1
0 1 −1

 ρ(τ) =

1 0 0
0 −1 1
0 0 1


The representation U2 is irreducible. Either

(i) Check that ρ2(σ) and ρ2(τ) have no common eigenvector, or

(ii) Change basis to

(
1
−ω

)
and

(
ω−1

−ω

)
, then

ρ2(σ) =

(
ω 0
0 ω−1

)
, ρ2(τ) =

(
0 1
1 0

)

(remember that 1 + ω+ ω−1 = 0) and we proved that this was irreducible in
Example 1.5.10.

1.6 Schur’s lemma and abelian groups

Theorem 1.6.1 (Schur’s Lemma). Let ρV : G → GL(V ) and ρW : G →
GL(W ) be irreps of G.
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(i) Let f : V → W be a G-linear map. Then either f is an isomorphism,
or f is the zero map.

(ii) Let f : V → V be a G-linear map. Then f = λ1V for some λ ∈ C.

Proof. (i) Suppose f is not the zero map. Ker(f) ⊂ V is a subrepresentation
of V , but V is an irrep, so either Ker(f) = 0 or V . Since f 6= 0, Ker(f) = 0,
i.e. f is an injection. Also, Im(f) ⊂ W is a subrepresentation, and W is
irreducible, so Im(f) = 0 or W . Since f 6= 0, Im(f) = W , i.e. f is a
surjection. So f is an isomorphism.

(ii) Every linear map from V to V has at least one eigenvalue. Let λ be an
eigenvalue of f and consider

f̂ = (f − λ1V ) : V → V

Then f̂ is G-linear, because

f̂(ρV (g)(x)) = f(ρV (g)(x))− λρV (g)(x)

= ρV (g)(f(x))− ρV (g)(λx)

= ρV (g)(f̂(x))

for all g ∈ G and x ∈ V . Since λ is an eigenvalue, Ker(f̂) is at least 1-
dimensional. So by part 1, f̂ is the zero map, i.e. f = λ1V .

[Aside: (i) works over any field whereas (ii) is special to C.]

Schur’s Lemma lets us understand the representation theory of abelian groups
completely.

Proposition 1.6.2. Suppose G is abelian. Then every irrep of G is 1-
dimensional.

Proof. Let ρ : G → GL(V ) be an irrep of G. Pick any h ∈ G and consider
the linear map

ρ(h) : V → V
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In fact this is G-linear, because

ρ(h)(ρ(g)(x)) = ρ(hg)(x)

= ρ(gh)(x) as G is abelian

= ρ(g)(ρ(h)(x))

for all g ∈ G, x ∈ V . So by Schur’s Lemma, ρ(h) = λh1V for some λh ∈ C.
So every element of G is mapped by ρ to a multiple of 1V . Now pick any
x ∈ V . For any h ∈ G, we have

ρ(h)(x) = λhx ∈ 〈x〉

so 〈x〉 is a (1-dimensional) subrepresentation of V . But V is an irrep, so
〈x〉 = V , i.e. V is 1-dimensional.

Corollary 1.6.3. Let ρ : G → GL(V ) be a representation of an abelian
group. Then there exists a basis of V such that every g ∈ G is represented
by a diagonal matrix ρ(g).

Proof. By Maschke’s Theorem, we can split ρ as a direct sum

V = U1 ⊕ U2 ⊕ . . .⊕ Un

of irreps. By Proposition 1.6.2, each Ui is 1-dimensional. Now apply Propo-
sition 1.5.12.

As remarked before, this is not true for non-abelian groups. However, there
is a weaker statement that we can prove for any group:

Corollary 1.6.4. Let ρ : G→ GL(V ) of any group G, and let g ∈ G. Then
there exists a basis of V such that ρ(g) is diagonal.

Notice the difference with the previous statement: with abelian groups, ρ(g)
becomes diagonal for every g ∈ G, here we are diagonalizing just one ρ(g).
This is not very impressive, because ‘almost all’ matrices are diagonalizable!
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Proof. Consider the subgroup 〈g〉 ⊂ G. It’s isomorphic to the cyclic group
of order k, where k is the order of g. In particular, it is abelian. Restricting
ρ to this subgroup gives a representation

ρ : 〈g〉 → GL(V )

Then Corollary 1.6.3 tells us we can find a basis of V such that ρ(g) is
diagonal.

Let’s describe all the irreps of cyclic groups (the simplest abelian groups).
Let G = Ck = 〈µ |µk = e〉. We’ve just proved that all irreps of G are
1-dimensional. A 1-dimensional representation of G is a homomorphism

ρ : G→ GL1(C)

This is determined by a single number

ρ(µ) ∈ C

such that ρ(µ)k = 1. So ρ(µ) = e
2πi
k
q for some q = [0, . . . , k − 1]. This gives

us k irreps ρ0, ρ1, ..., ρk−1 where

ρq : µ 7→ e
2πi
k
q

Claim 1.6.5. These k irreps are all distinct, i.e. ρi and ρj are not isomor-
phic if i 6= j.

Example 1.6.6. Let G = C4 = 〈µ |µ4 = e〉. There are 4 distinct (1-
dimensional) irreps of G. They are

ρ0 : µ 7→ 1 (the trivial representation)

ρ1 : µ 7→ e
2πi
4 = i

ρ2 : µ 7→ e
2πi
4
×2 = −1

ρ3 : µ 7→ e
2πi
4
×3 = −i

Look back at Example 1.1.1. We wrote down a representation

ρ : µ 7→
(

0 −1
1 0

)
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After diagonalising, this became the equivalent representation

ρ : µ 7→
(
i 0
0 −i

)
So ρ is the direct sum of ρ1 and ρ3.

More generally, let G be a direct product of cyclic groups

G = Ck1 × Ck2 × . . .× Ckr

G is generated by elements µ1, . . . , µr such that µktt = e and every pair µs, µt
commutes. An irrep of G must be a homomorphism

ρ : G→ GL1(C)

and this is determined by r numbers

ρ(µ1), . . . , ρ(µr)

such that ρ(µt)
kt = 1 for all t, i.e. ρ(µt) = e

2πi
kt
qt for some qt ∈ [0, . . . , kt− 1].

This gives k1 × . . .× kr 1-dimensional irreps. We label them ρq1,...,qr where

ρq1,...,qr : µt 7→ e
2πi
kt
qt

Claim 1.6.7. All these irreps are distinct.

Notice that the number of irreps is equal to the size of G! We’ll return to
this fact later.

Example 1.6.8. Let G = C2 × C2 = 〈σ, τ |σ2 = τ 2 = e, στ = τσ〉. There
are 4 (1-dimensional) irreps of G. They are:

ρ0,0 : σ 7→ 1, τ 7→ 1 (the trivial representation)

ρ0,1 : σ 7→ 1, τ 7→ −1

ρ1,0 : σ 7→ −1, τ 7→ 1

ρ1,1 : σ 7→ −1, τ 7→ −1
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Look back at Example 1.1.2. We found a representation of C2 × C2

ρ(σ) = Ŝ =

(
1 0
0 −1

)
ρ(τ) = T̂ =

(
−1 0
0 1

)
So ρ is the direct sum of ρ0,1 and ρ1,0.

You may have heard of the fundamental result:

Theorem (Structure theorem for finite abelian groups). Every finite abelian
group is a direct product of cyclic groups.

So now we know everything (almost!) about representations of finite abelian
groups. Non-abelian groups are harder...

1.7 Vector spaces of linear maps

Let V and W be vector spaces. You should recall that the set

Hom(V,W )

of all linear maps from V to W is itself a vector space. If f1, f2 are two linear
maps V → W then their sum is defined by

(f1 + f2) : V → W

x 7→ f1(x) + f2(x)

and for a scalar λ ∈ C, we define

(λf1) : V → W

x 7→ λf1(x)

If {a1, . . . , an} is a basis for V , and {b1, . . . , bm} is a basis for W , then we
can define

fji : V → W

ak 7→
{
bj if k = i
0 if k 6= i
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i.e. ai 7→ bj and all other basis vectors go to zero.

The set {fji | 1 ≤ i ≤ n, 1 ≤ j ≤ m} is a basis for Hom(V,W ). In particular,

dim Hom(V,W ) = (dimV )(dimW )

Once we’ve chosen these bases we can identify Hom(V,W ) with the set
Matn×m(C) of n×mmatrices, and Matn×m(C) is obviously an (nm)-dimensional
vector space. The maps fji correspond to the matrices which have one of
their entries equal to 1 and all other entries equal to zero.

Example 1.7.1. Let V = W = C2, equipped with the standard basis. Then

Hom(V,W ) = Mat2×2(C)

This is a 4-dimensional vector space. The obvious basis is

f11 =

(
1 0
0 0

)
f12 =

(
0 1
0 0

)
f21 =

(
0 0
1 0

)
f22 =

(
0 0
0 1

)

Now suppose that we have representations

ρV : G→ GL(V )

ρW : G→ GL(W )

There is a natural representation of G on the vector space Hom(V,W ). For
g ∈ G, we define

ρHom(V,W )(g) : Hom(V,W )→ Hom(V,W )

f 7→ ρW (g) ◦ f ◦ ρV (g−1)

Clearly, ρHom(V,W )(g)(f) is a linear map V → W .

Claim 1.7.2. ρHom(V,W )(g) is a linear map from Hom(V,W ) to Hom(V,W ).

We need to check that

(i) For all g, ρHom(V,W )(g) is invertible.
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(ii) The map g 7→ ρHom(V,W )(g) is a homomorphism.

Observe that

ρHom(V,W )(h) ◦ ρHom(V,W )(g) : f 7→ ρW (h) ◦ (ρW (g) ◦ f ◦ ρV (g−1)) ◦ ρV (h−1)

= ρW (hg) ◦ f ◦ ρV (g−1h−1)

= ρHom(V,W )(hg)(f)

In particular,

ρHom(V,W )(g) ◦ ρHom(V,W )(g
−1) = ρHom(V,W )(e)

= 1Hom(V,W )

= ρHom(V,W )(g
−1) ◦ ρHom(V,W )(g)

So ρHom(V,W )(g
−1) is inverse to ρHom(V,W )(g). So we have a function

ρHom(V,W ) : G→ GL(Hom(V,W ))

and it’s a homomorphism, so we indeed have a representation.

Suppose we pick bases for V and W , so ρV and ρW become matrix represen-
tations

ρV : G→ GLn(C)

ρW : G→ GLm(C)

Then Hom(V,W ) = Matn×m(C) and

ρHom(V,W )(g) : Matn×m(C)→ Matn×m(C)

is the linear map
M 7→ ρW (g)M(ρV (g))−1

Example 1.7.3. Let G = C2, and let V = C2 be the regular representation,
and W be the 2-dimensional trivial representation. So

ρV (τ) =

(
0 1
1 0

)
and ρW (τ) =

(
1 0
0 1

)
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Then Hom(V,W ) = Mat2×2(C), and ρHom(V,W )(τ) is the linear map

ρHom(V,W )(τ) : Mat2×2(C)→ Mat2×2(C)

M 7→ ρW (τ)MρV (τ)−1 = M

(
0 1
1 0

)
ρHom(V,W ) is a 4-dimensional representation of C2. If we choose a basis for
Hom(V,W ), we get a 4-dimensional matrix representation

ρHom(V,W ) : C2 → GL4(C)

Let’s use our standard basis for Hom(V,W ). We have:

ρHom(V,W )(τ) :

(
1 0
0 0

)
7→
(

0 1
0 0

)
(

0 0
1 0

)
7→
(

0 0
0 1

)
(

0 1
0 0

)
7→
(

1 0
0 0

)
(

0 0
0 1

)
7→
(

0 0
1 0

)
So in this basis, ρHom(V,W )(τ) is given by the matrix

0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0


When V and W have representations of G, we are particularly interested in
the G-linear maps from V to W . They form a subset of Hom(V,W ).

Claim 1.7.4. The set of G-linear maps from V to W is a subspace of
Hom(V,W ).

In particular, the set of G-linear maps from V to W is a vector space. We
call it

HomG(V,W )

In fact, HomG(V,W ) is a subrepresentation of Hom(V,W ).
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Definition 1.7.5. Let ρ : G→ GL(V ) be any representation. We define the
invariant subrepresentation

V G ⊂ V

to be the set
{x ∈ V | ρ(g)(x) = x, ∀g ∈ G}

It’s easy to check that V G is actually a subspace of V , and it’s obvious that
it’s also a subrepresentation (this justifies the name). It’s isomorphic to a
trivial representation.

Proposition 1.7.6. Let ρV : G → GL(V ) and ρW : G → GL(W ) be repre-
sentations. Then

HomG(V,W ) ⊂ Hom(V,W )

is exactly the invariant subrepresentation Hom(V,W )G of Hom(V,W )

Proof. Let f ∈ Hom(V,W ). Then f is in the invariant subrepresentation
Hom(V,W )G iff we have

f = ρHom(V,W )(g)(f) = ρW (g) ◦ f ◦ ρV (g−1) ∀g ∈ G
⇐⇒ f ◦ ρV (g) = ρW (g) ◦ f ∀g ∈ G

which is exactly the condition that f is G-linear.

Example 1.7.7. As in Example 1.7.3, let G = C2, V = C2 be the regular
representation andW = C2 be the 2-dimensional trivial representation. Then

M ∈ Hom(V,W ) = Mat2×2(C)

is in the invariant subrepresentation if and only if

ρHom(V,W )(τ)(M) = M

In the standard basis ρHom(V,W ) is a 4× 4-matrix and the invariant subrepre-
sentation is the eigenspace of this matrix with eigenvalue 1. This is spanned
by 

1
0
1
0

 &


0
1
0
1


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So HomG(V,W ) = (Hom(V,W ))G is 2-dimensional. It’s spanned by(
1 1
0 0

)
and

(
0 0
1 1

)
∈ Mat2×2(C)

Now we can (partially) explain the clever formula in Maschke’s Theorem,
when we cooked up a G-linear projection f out of a linear projection f̃ .

Proposition 1.7.8. Let ρ : G → GL(V ) be any representation. Consider
the linear map

Ψ :V → V

x 7→ 1

|G|
∑
g∈G

ρ(g)(x)

Then Ψ is a G-linear projection from V onto V G.

Proof. First we need to check that Ψ(x) ∈ V G for all x. For any h ∈ G,

ρ(h)(Ψ(x)) =
1

|G|
∑
g∈G

ρ(h)ρ(g)(x)

=
1

|G|
∑
g

ρ(hg)(x)

=
1

|G|
∑
g

ρ(g)(x) (relabelling g 7→ h−1g)

= Ψ(x)

So Ψ is a linear map V → V G. Next, we check it’s a projection. Let x ∈ V G.
Then

Ψ(x) =
1

|G|
∑
g

ρ(g)(x)

=
1

|G|
∑
g

x = x
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Finally, we check that Ψ is G-linear. For h ∈ G,

Ψ(ρ(h)(x)) =
1

|G|
∑
g∈G

ρ(g)(h)(x)

=
1

|G|
∑
g∈G

ρ(gh)(x)

=
1

|G|
∑
g∈G

ρ(hg)(x) (relabelling g 7→ hgh−1)

= ρ(h)Ψ(x)

As a special case, let V and W be representations of G, and consider the rep-
resentation Hom(V,W ). The above proposition gives us a G-linear projection
from

Ψ : Hom(V,W )→ HomG(V,W )

In the proof of Maschke’s Theorem, we applied Ψ to f̃ to get f . This explains
why f is G-linear, but we’d still have to check that f is a projection.

1.8 More on decomposition into irreps

In Section 1.5 we proved the basic result (Corollary 1.5.9) that every repre-
sentation can be decomposed into irreps. In this section, we’re going to prove
that this decomposition is unique. Then we’re going to look at the decom-
position of the regular representation, which turns out to be very powerful.

Before we can start, we need some technical lemmas.

Lemma 1.8.1. Let U, V,W be three vector spaces. Then we have natural
isomorphisms

(i) Hom(V, U ⊕W ) = Hom(V, U)⊕ Hom(V,W )

(ii) Hom(U ⊕W,V ) = Hom(U, V )⊕ Hom(W,V )
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Furthermore, if U, V,W carry representations of G, then (i) and (ii) are
isomorphisms of representations.

Before we start the proof, notice that all four spaces have the same dimension,
namely

(dimV )(dimW + dimU)

so the statement is at least plausible!

Proof. Recall that we have inclusion and projection maps

U
ιU // U ⊕W
πU
oo

πW //W
ιW
oo

where
ιU : x 7→ (x, 0)

πU : (x, y) 7→ x

and similarly for ιW and πW . From their definition, it follows immediately
that

ιU ◦ πU + ιW ◦ πW = 1U⊕W

(i) Define

P : Hom(V, U ⊕W )→ Hom(V, U)⊕ Hom(V,W )

by
P : f 7→ (πU ◦ f, πW ◦ f)

In the other direction, define

P−1 : Hom(V, U)⊕ Hom(V,W )→ Hom(V, U ⊕W )

by
P−1 : (fU , fW ) 7→ ιU ◦ fU + ιW ◦ fW

Claim 1.8.2. P and P−1 are linear maps.
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Also, P and P−1 are inverse to each other (as our notation suggests!). We
check that

P−1 ◦ P : f 7→ιU ◦ πU ◦ f + ιW ◦ πW ◦ f
= (ιU ◦ πU + ιW ◦ πW ) ◦ f
= f

but both vector spaces have the same dimension, so P ◦ P−1 must also be
the identity map (or you can check this directly). So P is an isomorphism of
vector spaces.

Now assume we have representations ρV , ρW , ρU of G on V , W and U . We
claim P is G-linear. Recall that

ρHom(V,U⊕W )(g)(f) = ρV⊕W (g) ◦ f ◦ ρV (g−1)

We have

πU ◦ (ρHom(V,U⊕W )(g)(f)) = πU ◦ ρU⊕W (g) ◦ f ◦ ρV (g−1)

= ρU(g) ◦ πU ◦ f ◦ ρV (g−1) (since πU is G-linear)

= ρHom(U,V )(g)(f)

and similarly for W , so

P (ρHom(V,U⊕W )(g)(f)) = (πU ◦ ρHom(V,U⊕W )(g)(f), πW ◦ ρHom(V,U⊕W )(g)(f))

= (ρHom(V,U)(g)(πU ◦ f), ρHom(V,W )(g)(πW ◦ f))

= ρHom(V,U)⊕Hom(V,W )(g)(πU ◦ f, πW ◦ f)

So P is G-linear, and we’ve proved (i).

(ii) Define

I : Hom(U ⊕W,V )→ Hom(U, V )⊕ Hom(W,V )

by
I : f 7→ f ◦ ιU , f ◦ ιW )

and
I−1 : Hom(U, V )⊕ Hom(W,V )→ Hom(U ⊕W,V )

by
I−1 : (fU , fV ) 7→ fU ◦ πU + fW ◦ πW

Then use very similar arguments to those in (i).
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Corollary 1.8.3. If U, V,W are representations of G, then we have natural
isomorphisms

(i) HomG(V, U ⊕W ) = HomG(V, U)⊕ HomG(V,W )

(ii) HomG(U ⊕W,V ) = HomG(U, V )⊕ HomG(W,V )

There are two ways to prove this corollary. We’ll just give the proofs for (i),
the proofs for (ii) are identical.

1st proof. By Lemma 1.8.1, we have a isomorphism of representations

P : Hom(V, U ⊕W )→ Hom(V, U)⊕ Hom(V,W )

Suppose f ∈ Hom(V, U ⊕W ) is actually G-linear. Then since πU and πW
are G-linear, we have that

P (f) ∈ HomG(V, U)⊕ HomG(V,W )

Now suppose that fU ∈ Hom(V, U) and fW ∈ Hom(V,W ) are both G-linear.
Then

P−1(fU , fW ) ∈ HomG(V, U ⊕W )

because ιU and ιW are G-linear and the sum of two G-linear maps is G-linear.
Hence P and P−1 define inverse linear maps between the two sides of (i).

2nd proof. We have a G-linear isomorphism

P : Hom(V, U ⊕W )→ Hom(V, U)⊕ Hom(V,W )

Thus P must induce an isomorphism between the invariant subrepresenta-
tions of each side. From Proposition 1.7.6, the invariant subrepresentation
on the left-hand-side is

Hom(V, U ⊕W )G = HomG(V, U ⊕W )

For the right-hand-side, we have

(Hom(V, U)⊕ Hom(V,W ))G = Hom(V, U)G ⊕ Hom(V,W )G

(this is true for any direct sum of representations) which is the same as

HomG(V, U)⊕ HomG(V,W )
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Now that we’ve dealt with these technicalities, we can get back to learning
more about the decompostion of representations into irreps.

Let V and W be irreps of G. Recall Schur’s Lemma (Theorem 1.6.1), which
tells us a lot about the G-linear maps between V and W and between V and
V . Here’s another way to say it:

Proposition 1.8.4. Let V and W be irreps of G. Then

dim HomG(V,W ) =

{
0 if V and W aren’t isomorphic
1 if V and W are isomorphic

Proof. Suppose V and W aren’t isomorphic. Then by Schur’s Lemma, the
only G-linear map from V to W is the zero map, so

HomG(V,W ) = {0}

Alternatively, suppose that f0 : V → W is an isomorphism. Then for any
f ∈ HomG(V,W ):

f−10 ◦ f ∈ HomG(V, V )

So by Schur’s Lemma, f−10 ◦f = λ1V , i.e. f = λf0. So f0 spans HomG(V,W ).

Proposition 1.8.5. Let ρ : G→ GL(V ) be a representation, and let

V = U1 ⊕ . . .⊕ Us
be a decomposition of V into irreps. Let W be any irrep of G. Then the num-
ber of irreps in the set {U1, . . . , Us} which are isomorphic to W is equal to the
dimension of HomG(W,V ). It’s also equal to the dimension of HomG(V,W ).

Proof. By Corollary 1.8.3,

HomG(W,V ) =
s⊕
i=1

HomG(W,Ui)

so

dim HomG(W,V ) =
s∑
i=1

dim HomG(W,Ui)

By Proposition 1.8.4, this equals the number of irreps in {U1, . . . , Us} that are
isomorphic to W . An identical argument works if we consider HomG(V,W )
instead.
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Now we can prove uniqueness of irrep decomposition.

Theorem 1.8.6. Let ρ : G→ GL(V ) be a representation, and let

V = U1 ⊕ . . .⊕ Us
V = Û1 ⊕ . . .⊕ Ûr

be two decompositions of V into irreducible subrepresentations. Then the two
sets of irreps {U1, . . . , Us} and {Û1, . . . , Ûr} are the same, i.e. s = r and
(possibly after reordering) Ui and Ûi are isomorphic for all i.

Proof. Let W be any irrep of G. By Proposition 1.8.5, the number of irreps in
the first decomposition that are isomorphic toW is equal to dim HomG(W,V ).
But the number of irreps in the second decomposition that are isomorphic
to W is also equal to dim HomG(W,V ). So for any irrep W , the two decom-
positions contain the same number of factors isomorphic to W .

Example 1.8.7. Let G = S3. So far, we’ve met three irreps of this group.
Let

ρ1 : S3 → GL(U1)

the 1-dimensional trivial representation, let

ρ2 : S3 → GL(U2)

be the sign representation (see Example 1.3.6), which is also 1-dimensional,
and let

ρ3 : S3 → GL(U3)

be the 2-dimensional irrep from Example 1.5.10. For any non-negative inte-
gers a, b, c we can form the representation

U⊕a1 ⊕ U⊕b2 ⊕ U⊕c3

By the above theorem, all of these representations are distinct.

So if we know all the irreps of a group G (up to isomorphism), then we know
all the representations of G: each representation can be described, uniquely,
as a direct sum of some number of copies of each irrep. This is similar to
the relationship between integers and prime numbers: each integer can be
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written uniquely as a product of prime numbers, with each prime occuring
with some multiplicity. However, there are infinitely many prime numbers!
As we shall see shortly, the situation for representations of G is much simpler.

In Section 1.3 we constructed the regular representation of any group G. We
take a vector space Vreg which has a basis

{bg | g ∈ G}

(so dimVreg = |G|), and define

ρreg : G→ GL(Vreg)

by
ρreg(h) : bg 7→ bhg

(and extending linearly). We claimed that this representation was very im-
portant. Here’s why:

Theorem 1.8.8. Let Vreg = U1 ⊕ . . .⊕ Us be the decomposition of Vreg as a
direct sum of irreps. Then for any irrep W of G, the number of factors in
the decomposition that are isomorphic to W is equal to dimW .

Before we look at the proof, let’s note the most important corollary of this
result.

Corollary 1.8.9. Any group G has only finitely many irreducible represen-
tations (up to isomorphism).

Proof. Every irrep occurs in the decomposition of Vreg at least once, and
dimVreg is finite.

So for any group G there is a finite list U1, ..., Ur of irreps of G (up to isomor-
phism), and every representation of G can be written uniquely as a direct
sum

U⊕a11 ⊕ ...⊕ Uar
r

for some non-negative integers a1, ..., ar. In particular, Theorem 1.8.8 says
that Vreg decomposes as

Vreg = U⊕d11 ⊕ ...⊕ U⊕drr

where
di = dimUi
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Example 1.8.10. Let G = S3, and let U1, U2, U3 be the three irreps of S3

from Example 1.8.7. The regular representation Vreg of S3 decomposes as

Vreg = U1 ⊕ U2 ⊕ U⊕23 ⊕ ...

But dimVreg = |S3| = 6, and

dim(U1 ⊕ U2 ⊕ U⊕23 ) = 1 + 1 + 2× 2 = 6

so there cannot be any other irreps of S3.

The proof of Theorem 1.8.8 follows easily from the following:

Lemma 1.8.11. For any representation W of G, we have a natural isomor-
phism of vector spaces

HomG(Vreg,W ) = W

Proof. Recall that we have a basis vector be ∈ Vreg corresponding to the
identity element in G. Define a function

T : HomG(Vreg,W )→ W

by ‘evaluation at be’, i.e.
T : f → f(be)

Let’s check that T is linear. We have

T (f1 + f2) = (f1 + f2)(be) = f1(be) + f2(be) = T (f1) + T (f2)

and
T (λf) = (λf)(be) = λf(be) = λT (f)

so it is indeed linear. Now let’s check that T is an injection. Suppose that
f ∈ HomG(Vreg,W ), and that T (f) = f(be) = 0. Then for any basis vector
bg ∈ Vreg, we have

f(bg) = f(ρreg(g)(be)) = ρW (g)(f(be)) = 0

So f sends every basis vector to zero, so it must be the zero map. Hence T
is indeed an injection. Finally, we need to check that T is a surjection, so we
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need to show that for any x ∈ W there is a G-linear map f from Vreg to W
such that f(be) = x. Fix an x ∈ W , and define a linear map

f : Vreg → W

by
f : bg 7→ ρW (g)(x)

Then in particular f(be) = x, so we just need to check that f is G-linear.
But for any h ∈ G, we have

f ◦ ρreg(h) : bg 7→ ρW (hg)(x)

ρW (h) ◦ f : bg 7→ ρW (h)(ρW (g)(x)) = ρW (hg)(x)

So f ◦ ρreg(h) = ρW (h) ◦ f , since both maps are linear and they agree on the
basis. Thus f is indeed G-linear, and we have proved that T is a surjection.

Proof of Theorem 1.8.8. Let Vreg = U1⊕ . . .⊕Us be the decomposition of the
regular representation into irreps. Let W be any irrep of G. By Proposition
1.8.5, we have that dim HomG(Vreg,W ) equals the number of Ui that are
isomorphic to W . But by Lemma 1.8.11,

dim HomG(Vreg,W ) = dimW

Corollary 1.8.12. Let U1, . . . , Ur be all the irreps of G, and let dimUi = di.
Then

r∑
i=1

d2i = |G|

Proof. By Theorem 1.8.8,

Vreg = U⊕d11 ⊕ . . .⊕ U⊕drr

Now take dimensions of each side.
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Notice this is consistent with out results on abelian groups. If G is abelian,
di = 1 for all i, so this formula says that

r =
r∑
i=1

d2i = |G|

i.e. the number of irreps of G is the size of G. This is what we found.

Example 1.8.13. Let G = S4. Let U1, . . . , Ur be all the irreps of G, with
dimensions d1, . . . , dr. Let U1 be the 1-dimensional trivial representation
and U2 be the sign representation, so d1 = d2 = 1. For any symmetric group
Sn these are the only possible 1-dimensional representations (see Problem
Sheets), so we must have di > 1 for i ≥ 3. We have:

d21 + . . .+ d2r = |G| = 24

⇒ d23 + . . .+ d2r = 22

This has only 1 solution. Obviously dk ≤ 4 for all k, as 52 = 25. Suppose
that dr = 4, then we would have

d23 + . . .+ d2r−1 = 22− 16 = 6

This is impossible, so actually dk ∈ [2, 3] for all k. The number of k such
that dk = 3 must be even because 22 is even, and we can’t have dk = 2 for
all k since 4 - 22. Therefore, the only possibility is that d3 = 2, d4 = 3 and
d5 = 3. So G has 5 irreps with these dimensions.

Example 1.8.14. Let G = D4. Let the irreducible representations be
U1, . . . , Ur with dimensions d1, . . . , dr. As usual, let U1 be the 1-dimensional
trivial representation. So

d22 + . . .+ d2r = |G| − 1 = 7

So either

(i) r = 8, and di = 1 ∀i

(ii) r = 5, and d2 = d3 = d4 = 1, d5 = 2
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In the Problem Sheets we show that D4 has a 2-dimensional irrep, so in fact
(ii) is true. The 2-dimensional irrep U5 is the representation we constructed
in Example 1.3.7 by thinking about the action of D4 on a square. If we
present D4 as 〈σ, τ | σ4 = τ 2 = e, τστ = σ−1〉 then the 4 1-dimensional irreps
are given by

ρij :σ 7→ (−1)i

τ 7→ (−1)j

for i, j ∈ {0, 1}.

1.9 Duals and tensor products

Let V be a vector space. Recall the definition of the dual vector space:

V ∗ = Hom(V,C)

This is a special case of Hom(V,W ) where W = C. So dimV ∗ = dimV , and
if {b1, . . . , bn} is a basis for V , then there is a dual basis {f1, . . . , fn} for V
defined by

fi(bj) =

{
1 if i = j
0 if i 6= j

Now let ρV : G → GL(V ) be a representation, and let C carry the (1-
dimensional) trivial representation of G. Then we know that V ∗ carries a
representation of G, defined by

ρHom(V,C)(g) : f 7→ f ◦ ρV (g−1)

We’ll denote this representation by (ρV )∗, we call it the dual representation
to ρV .

Another way to say it is that we define

(ρV )∗(g) : V ∗ → V ∗

to be the dual map to
ρV (g−1) : V → V

If we have a basis for V , so ρV (g) is a matrix, then ρ∗V (g) is described in the
dual basis by the matrix

ρV (g)−T
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Example 1.9.1. Let G = S3 = 〈σ, τ | σ3 = τ 2 = e, τστ = σ−1〉 and let ρ be
the 2-dimensional irrep of G. In the appropriate basis (see Problem Sheets)

ρ(σ) =

(
ω 0
0 ω−1

)
(where ω = e

2πi
3 )

ρ(τ) =

(
0 1
1 0

)
The dual representation (in the dual basis) is

ρ∗(σ) =

(
ω−1 0

0 ω

)
ρ(τ) =

(
0 1
1 0

)
This is equivalent to ρ under the change of basis

P =

(
0 1
1 0

)
So in this case, ρ∗ and ρ are isomorphic.

Example 1.9.2. Let G = C3 = 〈µ | µ3 = e〉 and consider the 1-dimensional
representation

ρ1 : µ 7→ ω = e
2πi
3

The dual representation is

ρ∗1 : µ 7→ ω−1 = e
4πi
3

So in this case,
ρ∗1 = ρ2

In particular, ρ1 and ρ∗1 are not isomorphic.

You should recall that (V ∗)∗ is naturally isomorphic to V as a vector space.
The isomorphism is given by

Φ :V → (V ∗)∗

x 7→ Φx
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where

Φx :V ∗ → C
f 7→ f(x)

We claim Φ is G-linear. Pick x ∈ V , and consider Φ(ρV (g)(x)). This is the
map

ΦρV (g)(x) :V ∗ → C
f 7→ f (ρV (g)(x))

Now consider (ρV ∗)
∗(g)(Φ(x)). By definition, this is the map

Φx ◦ ρV ∗(g−1) :V ∗ → C
f 7→ Φx

(
ρV ∗(g

−1)(f)
)

= Φx (f ◦ ρV (g))

= (f ◦ ρV (g)) (x)

So Φ (ρV (g)(x)) and (ρV ∗)
∗(g) (Φ(x)) are the same element of (V ∗)∗, so Φ is

indeed G-linear. Therefore, (V ∗)∗ and V are naturally isomorphic as repre-
sentations.

Proposition 1.9.3. Let V carry a representation of G. Then V is irreducible
if and only if V ∗ is irreducible.

Proof. Suppose V is not irreducible, i.e. it contains a non-trivial subrepre-
sentation U ⊂ V . By Maschke’s Theorem, there exists another subrepre-
sentation W ⊂ V such that V = U ⊕W . By Corollary 1.8.3, this implies
V ∗ = U∗ ⊕W ∗, so V ∗ is not irreducible. By the same argument, if V ∗ is not
irreducible then neither is (V ∗)∗ = V .

So ‘taking duals’ gives an order-2 permutation of the set of irreps of G.

Next we’re going to define tensor products. There are several ways to define
these, of varying degrees of sophistication. We’ll start with a very concrete
definition.

Let V and W be two vector spaces and assume we have bases {a1, . . . , an}
for V and {b1, . . . , bm} for W .
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Definition 1.9.4. The tensor product of V and W is the vector space
which has a basis given by the set of symbols

{ai ⊗ bt | 1 ≤ i ≤ n, 1 ≤ t ≤ m}

We write the tensor product of V and W as

V ⊗W

By definition, dim(V ⊗W ) = (dimV )(dimW ). If we have vectors x ∈ V
and y ∈ W , we can define a vector

x⊗ y ∈ V ⊗W

as follows. Write x and y in the given bases, so

x = λ1a1 + . . .+ λnan

y = µ1b1 + . . .+ µmbm

for some coefficients λi, µt ∈ C. Then we define

x⊗ y =
∑
i∈[1,n]
t∈[1,m]

λiµt ai ⊗ bt

(think of expanding out the brackets). Now let V and W carry representa-
tions of G. We can define a representation of G on V ⊗W , called the tensor
product representation. We let

ρV⊗W (g) : V ⊗W → V ⊗W

be the linear map defined by

ρV⊗W (g) : ai ⊗ bt 7→ ρV (g)(ai)⊗ ρW (g)(bt)

Suppose ρV (g) is described by the matrix M (in this given basis), and ρW (g)
is described by the matrix N . Then

ρV⊗W (g) : ai ⊗ bt 7→

(
n∑
j=1

Mjiaj

)
⊗

(
m∑
s=1

Nstbs

)
=
∑
j∈[1,n]
s∈[1,m]

MjiNst aj ⊗ bs
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So ρV⊗W (g) is described by the nm× nm matrix M ⊗N , whose entries are

[M ⊗N ]js,it = MjiNst

This notation can be quite confusing! This matrix has n ×m rows, and to
specify a row we have to give a pair of numbers (j, s), where 1 ≤ j ≤ n and
1 ≤ s ≤ m. When we write js above, we mean this pair of numbers, we don’t
mean their product. Similiarly to specify a column we have to give another
pair of numbers (i, t). Fortunately we won’t have to use this notation much.

We haven’t checked that ρV⊗W is a homomorphism. However, there is a more
fundamental question: how do we know that this construction is independent
of our choice of bases? Both questions are answered by the following:

Proposition 1.9.5. V ⊗W is isomorphic to Hom(V ∗,W ).

We can view this proposition as an alternative definition for V ⊗ W . It’s
better because it doesn’t require us to choose bases for our vector spaces,
but it’s less explicit.

[Aside: this definition only works for finite-dimensional vector spaces. There
are other basis-independent definitions that work in general, but they’re even
more abstract.]

Proof. Let {α1, . . . , αn} be the basis for V ∗ dual to {a1, . . . , an}. Then
Hom(V ∗,W ) has a basis {fti | 1 ≤ i ≤ n, 1 ≤ t ≤ m} where

fti :αi 7→ bt

α 6=i 7→ 0

Define an isomorphism of vector spaces between Hom(V ∗,W ) and V ⊗W by
mapping

fti 7→ ai ⊗ bt
To prove the proposition it’s sufficient to check that the representation ρHom(V ∗,W )

agrees with the definition of ρV⊗W when we write it in the basis {fti}. Pick
g ∈ G and let ρV (g) and ρW (g) be described by matrices M and N in the
given bases. By definition,

ρHom(V ∗,W )(g) : fti 7→ ρW (g) ◦ fti ◦ ρV ∗(g−1)
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Now

ρV ∗(g
−1) : αk 7→

n∑
j=1

Mkjαj

because ρV ∗(g
−1) is given by the matrix MT in the dual basis. So

fti ◦ ρV ∗(g−1) : αk 7→Mkibt

and

ρW (g) ◦ fti ◦ ρV ∗(g−1) : αk 7→Mki

(
m∑
j=1

Nstbs

)
Therefore, if we write ρW (g) ◦ fti ◦ ρV ∗(g−1) in terms of the basis {fsj}, we
have

ρW (g) ◦ fti ◦ ρV ∗(g−1) =
∑
j∈[1,n]
s∈[1,m]

MjiNstfsj

(since both sides agree on each basis vector αk) and this is exactly the formula
for the tensor product representation ρV⊗W .

Corollary 1.9.6. Hom(V,W ) is isomorphic to V ∗ ⊗W .

Proof.
V ∗ ⊗W = Hom((V ∗)∗,W ) = Hom(V,W )

In general, tensor products are hard to calculate, but there is an easy special
case, namely when the vector space V is 1-dimensional. Then for any g ∈ G,
ρV (g) is just a scalar, so if ρW (g) is described by a matrix N (in some basis),
then ρV⊗W is described by the matrix ρV (g)N .

Example 1.9.7. Let G = S3, and W be the 2-dimensional irrep, so

ρW (σ) =

(
ω 0
0 ω−1

)
, ρW (τ) =

(
0 1
1 0

)
Let V be the 1-dimensional sign representation, so

ρV (σ) = 1, ρV (τ) = −1
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Then V ⊗W is given by

ρV⊗W (σ) =

(
ω 0
0 ω−1

)
, ρV⊗W (τ) =

(
0 −1
−1 0

)

In general, the tensor product of two irreducible representations will not be
irreducible. For example, if W is the 2-dimensional irrep of S3 as above, then
W ⊗W is 4-dimensional and so cannot possibly be an irrep. However,

Claim 1.9.8. If V is 1-dimensional, then V ⊗ W is irreducible iff W is
irreducible.

Therefore in the above example the 2-dimensional representation V ⊗W is
irreducible. We know that there’s only one 2-dimensional irrep of S3, so
V ⊗W must be isomorphic to W . Find the change-of-basis matrix!

2 Characters

2.1 Basic properties

Let M be an n× n matrix. Recall that the trace of M is

Tr(M) =
n∑
i=1

Mii

If N is another n× n matrix, then

Tr(NM) =
n∑

i,j=1

NijMji = Tr(MN)

which implies that

Tr(P−1MP ) = Tr(PP−1M) = Tr(M)
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Definition 2.1.1. Let V be a vector space, and

f : V → V

a linear map. Pick a basis for V and let M be the matrix describing f in
this basis. We define

Tr(f) = Tr(M)

This definition does not depend on the choice of basis, because choosing a
different basis will produce a matrix which is conjugate to M , and hence has
the same trace.

Now let G be a group, and let ρ be a representation

ρ : V → GL(V )

on a vector space V .

Definition 2.1.2. The character of the representation ρ is the function

χρ :G→ C
g 7→ Tr (ρ(g))

Notice that χρ is not a homomorphism in general, since generally

Tr(MN) 6= Tr(M) Tr(N)

Example 2.1.3. Let G = C2×C2 = 〈σ, τ | σ2 = τ 2 = e, στ = τσ〉. Let ρ be
the direct sum of ρ1,0 and ρ1,1, so

ρ(e) =

(
1 0
0 1

)
, ρ(σ) =

(
−1 0
0 −1

)
ρ(τ) =

(
1 0
0 −1

)
, ρ(στ) =

(
−1 0
0 1

)
Then

χρ :ρ 7→ 2

σ 7→ −2

τ 7→ 0

στ 7→ 0
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Proposition 2.1.4. Isomorphic representations have the same character.

Proof. In Proposition 1.4.3 we showed that if two representations are isomor-
phic, then there exist bases in which they are described by the same matrix
representation.

Later on we’ll prove the converse to this statement, that if two representations
have the same character, then they’re isomorphic!

Proposition 2.1.5. Let ρ : G → GL(V ) be a representation of dimension
d, and let χρ be its character. Then

(i) If g and h are conjugate in G then

χρ(g) = χρ(h)

(ii) For any g ∈ G
χρ
(
g−1
)

= χρ(g)

(iii) χρ(e) = d

(iv) For all g ∈ G,
|χρ(g)| ≤ d

and |χρ(g)| = d if and only if ρ(g) = λ1V for some λ ∈ C

Proof. (i) Suppose g = µ−1hµ for some µ ∈ G. Then

ρ(g) = ρ(µ−1)ρ(h)ρ(µ)

So in any basis, the matrices for ρ(g) and ρ(h) are conjugate, so

Tr (ρ(g)) = Tr (ρ(h))

This says that χρ is a class function, more on these later.

(ii) Let g ∈ G and let the order of g be k. By Corollary 1.6.4, there exists a
basis of V such that ρ(g) becomes a diagonal matrix. Let λ1, . . . , λd be the
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diagonal entries (i.e. the eigenvalues of ρ(g)). Then each λi is a kth root of
unity, so |λi| = 1, so λ−1i = λi. Then

χρ(g
−1) = Tr

(
ρ(g−1)

)
=

d∑
i=1

λ−1i =
d∑
i=1

λi = χρ(g)

(iii) In every basis, ρ(e) is the d× d identity matrix.

(iv) Using the same notation as in (ii), we have

|χρ(g)| =

∣∣∣∣∣
d∑
i=1

λi

∣∣∣∣∣ ≤
d∑
i=1

|λi| = d

by the triangle inequality. Furthermore, equality holds iff

arg(λi) = arg(λj) for all i, j

⇐⇒ λi = λj for all i, j (since |λi| = |λj| = 1)

⇐⇒ ρ(g) = λ1V for some λ ∈ C

Property (iv) is enough to show:

Corollary 2.1.6. Let ρ be a representation of G (of dimension d), and let
χρ be its character. Then for any g ∈ G

ρ(g) = 1 ⇐⇒ χρ(g) = d

Proof. (⇒) is obvious.

(⇐) Assume χρ(g) = d. Then |χρ(g)| = d, so by Proposition 2.1.5(iv)
ρ(g) = λ1 for some λ ∈ C. But then χρ(g) = λd, so λ = 1.

So if you know χρ, then you know the kernel of ρ. In particular you know
whether or not ρ is faithful.

Let ξ, ζ be any two functions from G to C. Then we define their sum and
product in the obvious ‘point-wise’ way, i.e. we define

(ξ + ζ)(g) = ξ(g) + ζ(g)

(ξζ)(g) = ξ(g)ζ(g)
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Proposition 2.1.7. Let ρV : G → GL(V ) and ρW : G → GL(W ) be repre-
sentations, and let χV and χW be their characters.

(i) χV⊕W = χV + χW

(ii) χV⊗W = χV χW

(iii) χV ∗ = χV

(iv) χHom(V,W ) = χV χW

Proof. (i) Pick bases for V and W , and pick g ∈ G. Suppose that ρV (g) and
ρW (g) are described by matrices M and N in these bases. Then ρV⊕W (g) is
described by the block-diagonal matrix(

M 0
0 N

)
So

Tr (ρV⊕W (g)) = Tr(M) + Tr(N) = Tr (ρV (g)) + Tr (ρW (g))

(ii)ρV⊗W (g) is given by the matrix

[M ⊗N ]js,it = MjiNst

The trace of this matrix is∑
i,t

[M ⊗N ]it,it =
∑
i,t

MiiNtt

= Tr(M) Tr(N)

i.e. χV⊗W (g) = χV (g)χW (g). This formula is very useful, it means we can
now forget the definition of the tensor product for most purposes!

(iii) ρV ∗(g) is described by the matrix M−T , so

Tr (ρV ∗(g)) = Tr(M−T )

= Tr(M−1)

= χV (g−1)

= χV (g) (by Proposition 2.1.5(ii))
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i.e. χV ∗(g) = χV (g).

(iv) By Corollary 1.9.6, the representation Hom(V,W ) is isomorphic to the
representation V ∗ ⊗W , so the statement follows by parts (ii) and (iii).

If ρ is an irreducible representation, we say that χρ is an irreducible char-
acter. We know that any group G has a finite list of irreps

U1, . . . , Ur

so there is a corresponding list of irreducible characters

χ1, . . . , χr

We also know that any representation is a direct sum of copies of these
irreps, i.e. if ρ : G → GL(V ) is a representation then there exist numbers
m1, . . . ,mr such that

V = U⊕m1
1 ⊕ . . .⊕ U⊕mrr

Then by Proposition 2.1.7(i) we have

χρ = m1χ1 + . . .+mrχr

So every character is a linear combination of the irreducible characters (with
non-negative integer coefficients).

The character of the regular representation ρreg is called the regular char-
acter, we write it as χreg.

Proposition 2.1.8. (i) Let {Ui} be the irreps of G, and let di be their
dimensions. Let {χi} be the corresponding irreducible characters. Then

χreg = d1χ1 + . . .+ drχr

(ii)

χreg(g) =

{
|G| if g = e

0 if g 6= e
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Proof. (i) By Theorem 1.8.8

Vreg = U⊕d11 ⊕ . . .⊕ U⊕drr

Taking characters of each side gives the statement.

(ii) χreg(e) = dimVreg = |G| by Proposition 2.1.5(iii). Suppose g 6= e. Then
for all h ∈ G,

gh 6= h

The regular representation has a basis {bh | h ∈ G}, and ρreg(g) is the linear
map

bh 7→ bgh

Since bgh 6= bh ∀h, we have Tr (ρreg(g)) = 0.

Part (ii) can be generalized to arbitrary permutation representations (see
Problem Sheets).

Example 2.1.9. Let G = Ck = 〈µ | µk = e〉. The irreps of G are the
1-dimensional representations

ρq : µ 7→ e
2πi
k
q, q ∈ [0, k − 1]

So the irreducible characters are the functions

χq = ρq : G→ C

(for 1-dimensional representations, the character is the same thing as the
representation). Lets check the identities from the previous proposition. If

χreg = χ0 + . . .+ χk−1

then

χreg(e) = χ0(e) + . . .+ χk−1(e)

= 1 + . . .+ 1 = k = |G|

and
χreg(µ) = 1 + e

2πi
k + . . .+ e

2πi
k

(k−1) = 0
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which is a familiar identity for roots of unity. In fact, for all s ∈ [1, k − 1],
the (maybe less familiar) identity

k−1∑
q=0

(
e

2πi
k

)sq
= 0

must hold, because both sides equal χreg(µ
s).

2.2 Inner products of characters

Let CG denote the set of all functions from G to C. Then CG is a vector
space: we’ve already defined the sum of two functions, and similarly we can
define scalar multiplication by

λξ :G→ C
g 7→ λξ(g)

for ξ ∈ CG and λ ∈ C.

The space CG has a basis given by the set of ‘characteristic functions’

{δg | g ∈ G}

defined by

δg : h→
{

1 if h = g
0 if h 6= g

To see that this indeed a basis, notice that we can write any function ξ ∈ CG

as a linear combination
ξ =

∑
g∈G

ξ(g)δg

This is an equality because both sides define the same function from G to C,
furthermore it should be obvious that this is the unique way to write ξ as a
linear combination of the δg. Consequently, the dimension of CG is the size
of G.

We’ve seen this vector space before. Recall that the vector space Vreg on
which the regular representation acts is, by definition, a |G|-dimensional
vector space with a basis {bg | g ∈ G}. Then the natural bijection of sets

{δg | g ∈ G} ↔ {bg | g ∈ G}

62



induces a natural isomorphism of vector spaces

CG ∼= Vreg

Despite this we’re going to keep two different notations, because we’re going
to think of these two vector spaces differently, and do different things with
them. In particular when we we write Cg we’ll generally ignore the fact that
it carries a representation of G.

Viewing the vector space CG as a space of functions, we can see an important
extra structure, it carries a Hermitian inner product.

Definition 2.2.1. Let ζ, ξ ∈ CG. We define their inner product by

〈ξ|ζ〉 =
1

|G|
∑
g∈G

ξ(g)ζ(g)

It’s easy to see that 〈ξ|ζ〉 is linear in the first variable, and conjugate-linear
in the second variable, i.e.

〈ξ|λζ〉 = λ〈ξ|ζ〉

It’s also clear that
〈ξ|ζ〉 = 〈ζ|ξ〉

Finally, the inner-product of any vector χ with itself is

〈ξ|ξ〉 =
∑
g∈G

|ξ(g)|2

which is a non-negative real number, and equal to zero iff ξ = 0. The
(positive) square-root of this number is called the norm of ξ. This list of
properties are the definition of a Hermitian inner product.

You should recall that there is a standard inner product on the vector space
Cn, defined by

〈x|y〉 = x1ȳi + ...+ xnȳn

and often written as ‘x.y’. This is an example of a Hermitian inner product.
If we identify CG with Cn (where n = |G|) using our basis {δg}, then our
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inner product is almost the same as the standard one, they only differ by the
overall scale factor 1

|G| .

The standard basis e1, .., en ∈ Cn are orthonormal with respect to the stan-
dard inner product, which means that ei.ej = 0 if i 6= j (they’re orthogonal),
and ei.ei = 1 (they each have norm 1). Notice that our basis elements {δg}
for CG are not quite orthonormal with respect to the inner product that
we’ve defined, because we have

〈δg|δh〉 =

{
0 if h 6= g
1
|G| if h = g

Recall that the characters of G are elements of CG, so we can evaluate this
inner product on pairs of characters. The answer turns out to be very useful.

Theorem 2.2.2. Let ρV : G → GL(V ) and ρW : G → GL(W ) be represen-
tations, and let χV , χW be their characters. Then

〈χW |χV 〉 = dim HomG(V,W )

In particular, the inner product of two characters is always a non-negative in-
teger. This is a strong restriction, because the inner product of two arbitrary
functions (i.e. not necessarily characters) can be any complex number.

Before we begin the proof, two quick lemmas:

Lemma 2.2.3. Let V be a vector space (of dimension n), and let f1, f2 be
linear maps from V to V . Then for any scalars λ1, λ2 ∈ C, we have

Tr(λ1f1 + λ2f2) = λ1 Tr(f1) + λ2 Tr(f2)

In other words, Tr is a linear map

Tr : Hom(V, V )→ C
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Proof. Pick any basis for V , and let M1 and M2 be the matrices describing
f1 and f2 in this basis. Then

Tr(λ1f1 + λ2f2) = Tr(λ1M1 + λ2M2) =
n∑
i=1

(λ1M1 + λ2M2)ii

= λ1

n∑
i=1

(M1)ii + λ2

n∑
i=1

(M2)ii = λ1 Tr(f1) + λ2 Tr(f2)

Lemma 2.2.4. Let V be a vector space, with subspace U ⊂ V , and let
π : V → V a projection onto U . Then

Tr(π) = dimU

Proof. Recall that V = U⊕Ker(π). Pick bases for U and Ker(π), so together
they form a basis for V . In this basis, π is given by the block-diagonal matrix(

1 0
0 0

)
with dimU being the size of the top block and dim Ker(π) being the size of
the bottom block. So Tr(π) = Tr(1U) = dimU .

Now we can present the proof of the Theorem.

Proof of Theorem 2.2.2. Recall that

HomG(V,W ) ⊂ Hom(V,W )

is the invariant subrepresentation, and that the map

Ψ : Hom(V,W )→ Hom(V,W )

f 7→ 1

|G|
∑
g∈G

ρHom(V,W )(g)(f)

is a projection onto HomG(V,W ) (see Proposition 1.7.8). We claim that

Tr(Ψ) = 〈χW |χV 〉
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By Lemma 2.2.4, this would prove the theorem.

Our projection map Ψ is a linear combination of the maps

ρHom(V,W )(g) : Hom(V,W )→ Hom(V,W )

Therefore, by Lemma 2.2.3 we have

Tr(Ψ) =
1

|G|
∑
g∈G

Tr(ρHom(V,W )(g))

However,
Tr(ρHom(V,W )(g)) = χHom(V,W )(g)

by definition, and
χHom(V,W )(g) = χV (g)χW (g)

by Proposition 2.1.7(iv). Therefore

Tr(Ψ) =
1

|G|
∑
g∈G

χV (g)χW (g) = 〈χW |χV 〉

Corollary 2.2.5. Let χ1, . . . , χr be the irreducible characters of G. Then

〈χi|χj〉 =

{
1 if i = j
0 if i 6= j

Proof. Let χi and χj be the characters of the irreps Ui, Uj. Then

〈χi|χj〉 = dim HomG(Ui, Uj) =

{
1 if Ui, Uj isomorphic
0 if Ui, Uj not isomorphic

by Proposition 1.8.4.

So the irreducible characters form a set of orthonormal vectors in CG. There-
fore, if we take any linear combination of them

ξ = λ1χ1 + ...λrχr ∈ CG
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(with λ1, ..., λr ∈ C) then we can calculate the coefficient of χi in ξ as the
inner product

〈ξ|χi〉 = λi

In particular the irreducible characters must be linearly independent, because
if we have some co-efficients such that

λ1χ1 + ...λrχr = 0

then the above formula tells us that each λi is equal to zero.

Now take a representation ρ : G→ GL(V ), and look at its character χρ. We
know that χρ can be written as a linear combination

χρ = m1χ1 + . . .+mrχr

of the irreducible characters, because the representation V can be decom-
posed into irreps. The mi are non-negative integers, they count the number
of copies of the irrep Ui occuring in V . We can calculate these coefficients
by calculating the inner product

〈χρ|χi〉 = mi

We’ve just proved:

Corollary 2.2.6. Let ρ : G→ GL(V ) be a representation, and let χρ be its
character. Then the number of copies of the irrep Ui occuring in the irrep
decomposition of V is given by the inner product 〈χρ|χi〉.

We can view this as a combination of Theorem 2.2.2 and Proposition 1.8.5,
because

〈χρ|χi〉 = dim HomG(Ui, V )

This gives us an extremely efficient way to calculate irrep decompositions!

Example 2.2.7. Let G = C4 = 〈µ | µ4 = e〉. Here’s a 2-dimensional
representation:

ρ :µ 7→M =

(
i 2
1 −i

)
µ2 7→M2 =

(
1 0
0 1

)
µ3 7→M3 = M

The character of ρ takes values
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e µ µ2 µ3

χρ 2 0 2 0

The irreducible characters of G are χq, q ∈ [0, 3], given by

e µ µ2 µ3

χq 1 iq i2q i3q

(these are the characters of the irreps ρq). So

〈χρ|χq〉 =
1

4

(
2× 1 + 0× (iq) + 2× (i2q) + 0× (i3q)

)
=

1

2
(1 + (−1)q)

=

{
1 if q = 0, 2
0 if q = 1, 3

So ρ is the direct sum of ρ0 and ρ2.

Here’s another Corollary of Theorem 2.2.2.

Corollary 2.2.8. Let χ be a character of G. Then χ is irreducible if and
only if

〈χ|χ〉 = 1

Proof. Write χ as a linear combination

χ = m1χ1 + . . .+mrχr

of the irreducible characters, for some non-negative integers m1, . . . ,mr.
Then

〈χ|χ〉 =
∑

i,j∈[1,r]

mimj〈χi|χj〉

= m2
1 + . . .+m2

r

by Corollary 2.2.5. So 〈χ|χ〉 = 1 iff exactly one of the mi = 1 and the rest
are 0.
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Recall (Proposition 2.1.5(i)) that a character gives the same value on con-
jugate elements of G. For g ∈ G, we write [g] for the set of elements of G
that are conjugate to g, this is called the conjugacy class of g. If we want
to calculate the inner product of two characters χV , χW , we don’t need to
evaluate χV (g)χW (g) on each group element, we just need to evaluate it once
on each conjugacy class, i.e.

〈χV |χW 〉 =
1

|G|
∑
g∈G

χV (g)χW (g)

=
1

|G|
∑
[g]

|[g]|χV (g)χW (g)

Example 2.2.9. Let G = D4 = 〈σ, τ | σ4 = τ 2 = e, στ = τσ−1〉. The
conjugacy classes in G are (see Problem Sheets):

[g] [e] [σ] [τ ] [στ ] [σ2]
|[g]| 1 2 2 2 1

Here is a two-dimensional representation of G:

ρ(σ) =

(
i 0
0 −i

)
, ρ(τ) =

(
0 1
1 0

)
(this is just the ‘square’ representation from Example 1.3.7 written in a par-
ticular basis). Then the character χ of this representation takes values

[g] [e] [σ] [τ ] [στ ] [σ2]
|[g]| 1 2 2 2 1
χ 2 0 0 0 -2

We compute

〈χ|χ〉 =
1

8

(
(1× 22) + 0 + 0 + 0 + (1× (−2)2)

)
= 1

so ρ must be irreducible.

Now we can prove (as promised) that the character completely determines
the representation. It’s really just another corollary of Theorem 2.2.2:
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Theorem 2.2.10. Let ρV : G→ GL(V ) and ρW : G→ GL(W ) be represen-
tations, and suppose that χV = χW . Then V and W are isomorphic.

This may look surprising at first, but it’s just a consequence of the fact that
there aren’t very many representations of G!

Proof. Let U1, . . . , Ur be the irreps of G, and χ1, . . . , χr be their characters.
We have

V = U⊕m1
1 ⊕ . . .⊕ U⊕mrr

for some numbers m1, . . . ,mr, and

W = U⊕l11 ⊕ . . .⊕ U⊕lrr

for some numbers l1, . . . , lr. So

χV = m1χ1 + . . .+mrχr

and
χW = l1χ1 + . . .+ lrχr

Since χV = χW , we have

mi = 〈χV |χi〉 = 〈χW |χi〉 = li

for all i. So V and W have the same irrep decompositions, and hence they’re
isomorphic.

So we can understand everything about representations in terms of charac-
ters, and characters are much easier to work with.

Example 2.2.11. Let G = D4. We know (Example 1.8.14) that G has 4
one-dimensional irreps U1, U2, U3, U4, and 1 two-dimensional irrep U5 (the
‘square’ representation). So a complete list of the irreducible characters of
D4 is

[g] [e] [σ] [τ ] [στ ] [σ2]
|[g]| 1 2 2 2 1
χ1 1 1 1 1 1
χ2 1 -1 1 -1 1
χ3 1 1 -1 -1 1
χ4 1 -1 -1 1 1
χ5 2 0 0 0 -2

70



This is called a character table. We can quickly see the following facts:

• For each i, we have χi = χi (since they only take real values). Therefore
each Ui is isomorphic to its own dual (Ui)

∗.

• If 1 ≤ i ≤ 4, then we have χiχ5 = χ5. Therefore Ui ⊗ U5 is isomorphic
to U5.

• Now let’s compute U5 ⊗ U5. We have

χ5χ5 = χ1 + χ2 + χ3 + χ4

(in general we could find the coefficients on the right-hand-side by using
the inner product, but in this case it’s quicker to just spot the answer).
So U5 ⊗ U5 is isomorphic to U1 ⊕ U2 ⊕ U3 ⊕ U4.

Example 2.2.12. LetG = D4 again. Suppose we’d found all the 1-dimensional
irreps of G, and we’d deduced that there must a be a 2-dimensional irrep,
but we couldn’t work out what it was (perhaps we were just algebraists and
didn’t know any geometry). Then we could write down most of the character
table, but the bottom line would read

χ5 2 a b c d

where a, b, c, d are unknown. Corollary 2.2.5 lets us deduce the unknown
values, without finding the representation U5. For each 1 ≤ i ≤ 4, we must
have 〈χi|χ5〉 = 0. This gives the four equations

2 + 2(a+ b+ c) + d = 0

2 + 2(−a+ b− c) + d = 0

2 + 2(a− b− c) + d = 0

2 + 2(−a− b+ c) + d = 0

Comparing the first equation with the remaining three, we get

a+ c = b+ c = a+ b = 0

so a = b = c = 0, and then d = −2.
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2.3 Class functions and character tables

Definition 2.3.1. A class function for a group G is a function

ξ : G→ C

such that
ξ(h−1gh) = ξ(g)

for all g, h ∈ G.

So a class function is a function in CG that is constant on each conjugacy
class. It’s elementary to check that the class functions form a subspace of
CG, we denote it by

CG
cl ⊂ CG

Recall that CG has a basis given by the functions

δg : h 7→
{

1 if h = g
0 if h 6= g

Similarly, Ccl has a basis given by the functions

δ[g] =
∑
g̃∈[g]

δg̃ : h 7→
{

1 if h ∈ [g]
0 if h /∈ [g]

So dim(CG
cl) is the number of conjugacy classes in G.

The space CG
cl carries a Hermitian inner product, it’s just given by the restric-

tion of the inner product from CG. Notice that if we want to calculate 〈ξ|ζ〉
where ξ and ζ are class functions, then we only need to evaluate ξ(g)ζ(g)
once on each conjugacy class, so the formula becomes

〈ξ|ζ〉 =
1

|G|
∑
[g]

|[g]|ξ(g)ζ(g)

(we already observed this for the case when ξ and ζ are characters). Also
notice that the basis

{
δ[g]
}

is orthogonal with respect to this inner product,
but not orthonormal, because we have

〈δ[g]|δ[h]〉 =

{
|[g]|
|G| if h = g

0 if h 6= g
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The numbers |[g]||G| have another interpretation. Recall that the centraliser
of a group element g ∈ G is the subgroup

Cg = {h ∈ G | hgh−1 = g}

of elements that commute with g. By the Orbit-Stabiliser theorem,

|Cg| =
|G|
|[g]|

so the norm of δ[g] is |Cg|−1.

Now let χ1, . . . , χr be the irreducible characters of G. Then each χi is a class
function, and they form an orthonormal set of vectors in CG

cl (by Corollary
2.2.5), and hence they’re linearly independent. The maximum size of a lin-
early independent set in a vector space is the dimension of the vector space,
so

r ≤ dimCG
cl

We’ve just proved:

Proposition 2.3.2. For any group G, the number of irreps of G is at most
the number of conjugacy classes in G.

In fact, a stronger result holds:

Theorem 2.3.3. For any group G, the number of irreps of G equals the
number of conjugacy classes in G.

We’re not going to prove this yet, we’ll prove it in Section 3 once we’ve
introduced the technology of group algebras.

Example 2.3.4. Let G = S4. You should recall that two permutations are
conjugate in Sn if and only if they have the same cycle type. So in S4 we
have conjugacy classes

[(1)], [(12)], [(123)], [(1234)], [(12)(34)]

So S4 has 5 irreps. This agrees with what we found in Example 1.8.13.
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Example 2.3.5. Let G = S5. The conjugacy classes in G are

[(1)], [(12)], [(123)], [(1234)], [(12345)], [(12)(34)], [(123)(45)]

So S5 has 7 irreps.

Theorem 2.3.3 is an unusual result. Since the number of irreps equals the
number of conjugacy classes, it would be reasonable to guess that there’s
some natural way to pair up each irrep with a conjugacy class, and vice
versa. But this is not true! There’s no sensible way to pair them up. The
correct way to think about it is expressed in the following corollary:

Corollary 2.3.6. The irreducible characters χ1, . . . , χr form a basis of CG
cl.

Proof. The irreducible characters form a linearly independent set in CG
cl, and

r = #{conjugacy classes} = dimCG
cl.

So we have two sensible bases for the vector space CG
cl, we have {δ[gj ]} which

is indexed by conjugacy classes, and {χi} which is indexed by irreps. The
two bases must have the same size, but there needn’t be a sensible way to
pair up their elements.

We’ve met character tables already in Section 2.2, but let’s give a formal
definition:

Definition 2.3.7. Let G be a group, let χ1, . . . , χr be the irreducible charac-
ters of G, and let [g1], . . . , [gs] be the conjugacy classes in G. The character
table of G is the matrix C with entries

Cij = χi(gj)

From Theorem 2.3.3 we know that r = s, so C is a square matrix.

Example 2.3.8. Let G = S3. Let

g1 = (1) g2 = (12) g3 = (123)

and let χ1, χ2, χ3 be the characters of the trivial, sign and triangular irreps.
The character table of G is the matrix
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(1) (12) (123)
χ1 1 1 1
χ2 1 -1 1
χ3 2 0 -1

As we observed in Corollary 2.3.6, the vector space CG
cl has two natural bases,

given by the sets {δ[gj ]} and {χi}. Suppose we had some vector written in
terms of the second basis, and we want to express it in terms of the first basis.
Then what we need is the change-of-basis matrix between the two bases, i.e.
we need to express each vector χi in terms of the basis {δ[gj ]}. But this is
easy, because

χi = χi(g1)δ[g1] + . . .+ χi(gr)δ[gr]

(since both sides give the same function G → C). These coefficients are
precisely the entries in C, i.e. C is (the transpose of) the change-of-basis
matrix between our two bases of CG

cl.

Let’s calculate CC
T

. We have

(CC
T

)ik =
r∑
j=1

CijCkj

=
r∑
j=1

χi(gi)χk(gj)

This looks like the formula for 〈χi|χj〉 but it’s missing the coefficients
|[gj ]|
|G| .

If we modify C by replacing it with the matrix

Bij = χi(gj)

√
|[gj]|
|G|

Then

(BB
T

)ik =
r∑
i=1

χi(gj)χ̄k(gj)
|[gj]|
|G|

= 〈χi|χk〉

=

{
1 if i = k
0 if i 6= k
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So BB
T

= 1r, i.e. B is a unitary matrix.

Recall that a unitary matrix is exactly a change-of-basis matrix between
two orthonormal bases of a complex vector space (it’s the analogue of an
orthogonal matrix for a real vector space). This explains why we have to make
this modification, the problem is that the basis {δ[gj ]} is not orthonormal.

The elements are orthogonal, but they have norms |[gi]||G| . However if we rescale

we can get an orthonormal basis
{
δ[gj ]

√
|G|
|[gj ]|

}
, and B is the change-of-basis

matrix between this basis and the orthonormal basis {χi}. This is why B is
a unitary matrix (and C is not).

Proposition 2.3.9. Let [gi] and [gj] be two conjugacy classes in G. Then

r∑
k=1

χk(gi)χk(gj) =

{
|G|
|[gi]| if i = j

0 if i 6= j

Proof. Let B be the modified character table. We have B−1 = B
T

, so B
T
B =

1r, i.e.

r∑
k=1

BkiBkj =

(
r∑

k=1

χk(gi)χk(gi)

)√
|[gi]||[gj]|
|G|

=

{
1 if i = j
0 if i 6= j

which implies the proposition.

Remember that |G|
|[gi]| = |Cgi | (the size of the centralizer of gi), so this is always

a positive integer.

Now we have two useful sets of equations on the character table C:

• Row Orthogonality:

r∑
j=1

CijCkj|[gj]| =
{
|G| if i = k
0 if i 6= k
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• Column Orthogonality:

r∑
k=1

CkiCkj =

{
|G|
|[gi]| = |Cgi | if i = j

0 if i 6= j

Both of them are really the statement that the modified character table B is
unitary.

Example 2.3.10. Let’s solve Example 2.2.12 again using column orthogo-
nality. We have a partial character table

[g] [e] [σ] [τ ] [στ ] [σ2]
|[g]| 1 2 2 2 1
|G|
|[g]| 8 4 4 4 8

χ1 1 1 1 1 1
χ2 1 -1 1 -1 1
χ3 1 1 -1 -1 1
χ4 1 -1 -1 1 1
χ5 2 a b c d

The [σ]-column gives the equation

1 + 1 + 1 + 1 + |a|2 = 4

so a = 0, and similarly b = c = 0. Orthogonality of the [e]-column and the
[σ2]-column gives the equation

1 + 1 + 1 + 1 + 2d = 0

so d = −2.

The column orthogonality equations carry exactly the same information as
the row orthogonality equations, but sometimes it’s quicker to use one rather
than the other (or we can use a mixture of both).
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3 Algebras and modules

3.1 Algebras

Consider the vector space Matn×n(C) of all n× n matrices. As well as being
a vector space, we have the extra structure of matrix multiplication, which
is a map

m : Matn×n(C)×Matn×n(C)→ Matn×n(C)

m : (M,N) 7→MN

This map has the following properties, it is:

(i) Bilinear: it’s linear in each variable.

(ii) Associative:
m(m(L,M), N) = m(L,m(M,N)

i.e.
(LM)N = L(MN)

(iii) Unital: there’s an element In ∈ Matn×n(C) obeyingm(M, I) = m(I,M) =
M for all M ∈ Matn×N(C).

A structure like this is called an algebra.

Definition 3.1.1. An algebra is a vector space A equipped with a map

m : A× A→ A

that is bilinear, associative and unital.

We’ll usually write ab when we mean m(a, b). Associativity means that the
expression abc is well defined (without brackets). We’ll generally write 1A
for the unit element.

Example 3.1.2. (i) The 1-dimensional vector space C is an algebra, with
m the usual multiplication.
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(ii) Let A = C⊕ C, with multiplication

m ((x1, y1), (x2, y2)) = (x1x2, y1y2)

Then A is an algebra. The unit is (1, 1).

(iii) Let A = C[x], the (infinite-dimensional) vector space of polynomials in
x. A is an algebra under the usual multiplication of polynomials, with
unit 1A = 1 (the constant polynomial with value 1). More generally,
we have an algebra A = C[x1, . . . , xn] of polynomials in n variables.

(iv) Let A be the 2-dimensional space with basis {1, x}. Define 12 = 1,
1x = x1 = x and x2 = 0, and extend bilinearly. Then A is an algebra.

(v) Let V be a vector space, and let A = Hom(V, V ). Multiplication is
given by composition of maps. If we pick a basis for V , then A be-
comes isomorphic to Matn×n(C), and composition of maps corresponds
to multiplication of matrices (Proposition A.2.3). Therefore A is an
algebra.

Except for example (iii), in each of these cases A is a finite-dimensional space.
From now on, we’ll assume our algebras are finite-dimensional. Examples (i)-
(iv) are all commutative, i.e. ab = ba for all a, b ∈ A. We will not assume
that our algebras are commutative.

For this course, the most important algebras are given by the following con-
struction:

Let G be a (finite) group, then we can construct an algebra from G. Suppose
the elements of G are given by {g1, . . . , gt}. Consider the set of formal linear
combinations of elements of G:

C[G] = {λ1g1 + . . .+ λtgt | λ1 . . . λt ∈ C}

This set is a vector space, we define

(λ1g1 + . . .+ λtgt) + (µ1g1 + . . .+ µtgt) = (λ1 + µ1)g1 + . . .+ (λt + µt)gt

and
µ(λ1g1 + . . .+ λtgt) = (µλ1)g1 + . . .+ (µλt)gt
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The set G sits inside C[G] as the subset where one coefficient is 1 and the
rest are zero. This set forms a basis for C[G], in fact we could have defined
C[G] to be the vector space with G as a basis.

C[G] is also an algebra, called the group algebra ofG. To define the product
of two basis elements, we just use the group product, i.e. we define

m(g, h) = gh ∈ G ⊂ C[G]

Now extend this to a bilinear map.

m : C[G]× C[G]→ C[G]

i.e. we define

(λ1g1 + . . .+ λtgt)(µ1g1 + . . .+ µtgt) = λ1µ1(g
2
1) + . . .+ λtµ1(gtg1) + . . .

. . .+ λ1µt(g1gt) + . . .+ λtµt(g
2
t )

=
∑
k

 ∑
i,j such that
gigj=gk

λiµjgk


This product is associative because the product in G is, and it has unit
e ∈ G ⊂ C[G].

Example 3.1.3. Let G = C2 = 〈e, g | g2 = e〉. Then

C[G] = {λ1e+ λ2g | λ1, λ2 ∈ C}

is a two-dimensional vector space, with multiplication

(λ1e1 + λ2g)(µ1e+ µ2g) = λ2µ1e+ λ1µ2g + λ2µ1g + λ2µ2e

= (λ1µ1 + λ2µ2)e+ (λ1µ2 + λ2µ1)g

We’ve met this vector space C[G] before. Recall that the regular representa-
tion of G acts on a vector space Vreg which has a basis {bg | g ∈ G}. So Vreg
is naturally isomorphic to C[G], via bg ↔ g. We’ve also met it as the space
CG of C-valued functions on G. This has a basis {δg|g ∈ G}.

Warning: For functions ξ, ζ ∈ CG we defined a ‘point-wise’ product

ξζ : g 7→ ξ(g)ζ(g)
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This makes CG into a algebra, but it’s completely different from the group
algebra C[G]. In the pointwise product,

δgδh =

{
δg if g = h
0 if g 6= h

In particular, CG is commutative, whereas C[G] usually isn’t.

We can also define C[G] for infinite groups, but then we get infinite-dimensional
algebras.

Definition 3.1.4. A homomorphism between algebras A and B is a linear
map

f : A→ B

such that

(i) f(1A) = 1B

(ii) f(a1a2) = f(a1)f(a2), ∀a1, a2 ∈ A

An isomorphism between A and B is a homomorphism that’s also an iso-
morphism of vector spaces.

Example 3.1.5. Let A = 〈1, x〉 where x2 = 0 (from Example 3.1.2(iv)).
There’s a homomorphism

f0 : A→ C
1A 7→ 1

x 7→ 0

In fact, f0 is the only possible such homomorphism. If f is any homomor-
phism from A to C then we must have f(1A) = 1, and

f(x)f(x) = f(x2) = f(0) = 0

⇒ f(x) = 0
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Example 3.1.6. Let A = C[C2] and let B = C⊕C as in Example 3.1.2(ii).
Define

f : A→ B

e 7→ (1, 1)

g 7→ (1,−1)

Then f is an isomorphism of vector spaces, and it’s also a homomorphism,
because

f(1A) = f(e) = (1, 1) = 1B

f(g)2 = ((1,−1))2 = (1, 1) = f(g2)

So f(a1, a2) = f(a1)f(a2) for all a1, a2 ∈ A by bilinearity. So A and B are
isomorphic algebras.

Most of the rest of this chapter will be devoted to generalizing the previous
example!

Now let A and B be two algebras. The vector space

A⊕B

is naturally an algebra, it has a product

m ((a1, b1), (a2, b2)) = (a1a2, b1b2)

The algebra axioms are easy to check, the unit is

1A⊕B = (1A, 1B)

We call this algebra the direct sum of A and B.

Example 3.1.7. If both A and B are the 1-dimensional algebra C, then
A⊕ B = C⊕ C is the algebra we defined in Example 3.1.2(ii). If we iterate
this construction we can make a k-dimensional algebra C⊕k for any k.

The direct sum of group algebras is not a group algebra in general, i.e. if
G1, G2 are groups then in general there does not exist a group G3 such that

C[G1]⊕ C[G2] = C[G3]
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Definition 3.1.8. Let A be an algebra. The opposite algebra Aop is the
algebra with the same underlying vector space as A, and with multiplication

mop(a, b) = ba

The algebra axioms for A imply immediately that Aop is an algebra, with
the unit 1A. Obviously mop is the same as the multiplication on A iff A is
commutative. However, it’s possible for a non-commutative ring to still be
isomorphic to its opposite.

Proposition 3.1.9. Let A = C[G]. Then the linear map

I : A→ Aop

I(g) = g−1

is an isomorphism of algebras.

Proof. I is an isomorphism of vector spaces (its inverse is I), and it’s a
homomorphism, because

I(gh) = h−1g−1 = I(h)I(g)

3.2 Modules

Definition 3.2.1. Let A be an algebra. A (left) A-module is a vector space
M , together with a homomorphism of algebras

ρ̃ : A→ Hom(M,M)

We’ll assume all our modules are finite-dimensional (as vector spaces). Of-
ten we’ll be lazy and say things like ‘let M be an A-module’, leaving the
homomorphism ρ̃ implicit.

The definition of a module is a direct generalization of the definition of a
representation of a group, in fact another name for an A-module is a ‘repre-
sentation of A’. For group algebras, the two concepts are the same:
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Proposition 3.2.2. Let G be a group. Then a C[G]-module is the same
thing as a representation of G.

Proof. Suppose
ρ̃ : C[G]→ Hom(M,M)

is a C[G]-module. Restricting ρ̃ to the subset G ⊂ C[G] gives a function

ρ : G→ Hom(M,M)

For g, h ∈ G we have
ρ(gh) = ρ(g) ◦ ρ(h)

using the fact that ρ̃ is an an algebra homomorphism, and the definition of
the product in C[G]. In particular,

ρ(g) ◦ ρ(g−1) = ρ(g−1) ◦ ρ(g) = ρ(e) = 1M

since e is the unit in C[G]. Thus each linear map ρ(g) has an inverse ρ(g−1),
so ρ defines a function

ρ : G→ GL(M)

which we’ve just shown to be a homomorphism. So it’s a representation of
G.

Conversely, suppose that
ρ : G→ GL(M)

is a representation of G. Extending linearly, we get a linear map

ρ̃ : C[G]→ Hom(M,M)

It follows immediately from the definition of the multiplication in C[G] that
this map ρ̃ is an algebra homomorphism, and hence defines a C[G]-module.

Example 3.2.3. Let A be the 1-dimensional algebra C. Then an A-module
is choice of vector space M and a homomorphism

ρ̃ : C→ Hom(M,M)

However, we must have ρ̃(1) = 1M , and by then by linearity we must have
ρ̃(λ) = λ1M . Thus there is a unique such ρ̃. So a C-module is exactly the
same thing as a vector space.
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Example 3.2.4. Let A = 〈1, x〉 with x2 = 0. Suppose M is a 1-dimensional
A-module, i.e. a 1-dimensional vector space M and a homomorphism

ρ̃ : A→ Hom(M,M) = C

By Example 3.1.5 there is a unique such ρ̃, defined by ρ̃(x) = 0.

Example 3.2.5. A = C ⊕ C, and let M be a 1-dimensional module, i.e. a
homomorphism

ρ̃ : A→ C
We must have

(ρ̃(1, 0))2 = ρ̃
(
(1, 0)2

)
= ρ̃(1, 0)

(ρ̃(0, 1))2 = ρ̃
(
(0, 1)2

)
= ρ̃(0, 1)

ρ̃(1, 0)ρ̃(0, 1) = ρ̃ ((1, 0)(0, 1)) = ρ̃(0, 0) = 0

ρ̃(0, 1) + ρ̃(1, 0) = ρ̃ ((1, 1)) = ρ̃(1A) = 1

There are two solutions, we must set one of the two numbers ρ̃(1, 0) and
ρ̃(0, 1) to be 1, and the other to be 0. So A has two 1-dimensional modules.

Recall (Example 3.1.6) that A is isomorphic to C[C2], so C[C2] must also
have two 1-dimensional modules. But a C[C2]-module is the same thing a
representation of C2, and we know that there are two 1-dimensional repre-
sentations of C2. So this is consistent!

Since modules are generalizations of representations, we should be able to
carry over some of the definitions and results of Section 1. Let’s do this now.

We begin by generalizing the regular representation. For any algebra A, there
is a canonical A-module, namely A itself. We define the module structure

ρ̃ : A→ Hom(A,A)

by

ρ̃(a) : A→ A

b 7→ ab

i.e. A acts on itself via left multiplication. The algebra axioms immediately
imply that A is an A-module.
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In the special case that A = C[G], we deduce that there is a canonical
representation of G on the vector space C[G]. This is exactly the regular
representation Vreg.

Let’s introduce some simpler notation. Suppose A is an algebra, and

ρ̃ : A→ Hom(M,M)

is an A-module. From now on, we’re going to write am to mean ρ̃(a)(m).
Note that the expression abm is well-defined without brackets.

Definition 3.2.6. Let M and N be two A-modules. A homomorphism of
A-modules (or an A-linear map) is a linear map

f : M → N

such that
f(ax) = af(x)

for all a ∈ A and x ∈M .

The set of all A-linear maps from M to N is a subset

HomA(M,N) ⊂ Hom(M,N)

It’s easy to check that it’s a subspace. In fact it’s a subalgebra, because the
composition of two A-linear maps is also A-linear.

Proposition 3.2.7. Let A = C[G] and M and N be A-modules. Let

ρM : G→ GL(M)

ρN : G→ GL(N)

be the corresponding representations. Then

HomA(M,N) = HomG(M,N)

Proof. Suppose f : M → N is A-linear. Then in particular

f(gx) = gf(x), ∀g ∈ G, x ∈M
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In our old representation notation, this says

f (ρM(g)(x)) = ρN(g) (f(x))

so f is G-linear.

Conversely, if f : M → N is G-linear then

f ((λ1g1 + . . .+ λtgt)(x)) = (λ1g1 + . . .+ λtgt)f(x)

by linearity and G-linearity of f , so f is A-linear.

Definition 3.2.8. A submodule of an A-module M is a subspace N ⊆M
such that

ax ∈ N, ∀a ∈ A, x ∈ N

Claim 3.2.9. Let A = C[G] be a group algebra, and let M be an A-module,
i.e. a representation of G. Then a submodule of M is the same thing as a
subrepresentation if M .

Definition 3.2.10. Let A be an algebra. An A-module M is simple if it
contains no non-trivial submodules.

Example 3.2.11. (i) Any 1-dimensional module must be simple.

(ii) If A = C[G], then an A-module is simple if and only if the corresponding
representation of G is irreducible. Really, ‘simple’ is just another word
for ‘irreducible’.

Schur’s Lemma is really a fact about simple modules:

Proposition 3.2.12. Let M and N be simple A-modules. Then

dim HomA(M,N) =

{
1 if M and N are isomorphic
0 if M and N are not isomorphic

Proof. Use the identical proof to Theorem 1.6.1 and Proposition 1.8.4.

Definition 3.2.13. Let M and N be A-modules. The direct sum of M
and N is the vector space M ⊕N equipped with the A-module structure

a(x, y) = (ax, ay)
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It’s easy to check that M ⊕ N is an A-module, i.e. the above formula does
indeed define a homorphism from A to Hom(M ⊕N,M ⊕N). It’s also easy
to check that this definition agrees with the definition of the direct sum of
representations in the special case A = C[G].

The inclusion and projection maps

M
ιM //M ⊕N
πM
oo

πN // N
ιN
oo

are all A-linear, so we can view M and N as submodules of M ⊕N .

Lemma 3.2.14. Let L,M,N be three A-modules. Then there are natural
isomorphisms of vector spaces

(i) HomA(L,M ⊕N) = HomA(L,M)⊕ HomA(L,N)

(ii) HomA(M ⊕N,L) = HomA(M,L)⊕ HomA(N,L)

Proof. This is just the same as the proof of the corresponding result for
representations (Lemma 1.8.1 and Corollary 1.8.3). To prove (i) we define

P : Hom(L,M ⊕N)→ Hom(L,M)⊕ Hom(L,N)

f 7→ (πM ◦ f, πN ◦ f)

and

P−1 : Hom(L,M)⊕ Hom(L,N)→ Hom(L,M ⊕N)

(f, g) 7→ ιM ◦ f + ιN ◦ g

and check that both P and P−1 are linear, take A-linear maps to A-linear
maps, and are inverse to each other. (ii) is proved similarly.

As we’ve seen, many constructions from the world of representations gen-
eralize to modules over an arbitrary algebra A. However, not everything
generalises. For example, the space of all linear maps Hom(M,N) between
two A-modules is not in general an A-module. Similarly, the dual vector
space M∗ and the tensor product M ⊗N are not A-modules in general (see
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Problem Sheets). Finally, there’s no generalisation of the trivial representa-
tion. So group algebras are quite special.

To end this section, let’s think about the relationship between taking the
direct sum of algebras, and the direct sum of modules over the same algebra.
Let A⊕B be the direct sum of two algebras A and B. If M is an A-module,
then we can view M as an A⊕B-module by defining

(a, b)(x) = ax

for x ∈ M , i.e. we let b act as zero on M for all b ∈ B. Similarly, every
B-module N can also be viewed as an A ⊕ B-module. So we can form the
direct sum M ⊕N , and this is an A⊕B-module. The multiplication is

(a, b)(x, y) = (ax, by)

for x ∈M , y ∈ N .

Proposition 3.2.15. Every module over A⊕B is isomorphic to M ⊕N for
some A-module M and some B-module N .

Before we prove this Proposition, we need a very quick lemma about linear
algebra. Recall that a projection is a linear map

f : V → V

such that f(x) = x whenever x ∈ Im(f).

Lemma 3.2.16. A linear map f : V → V is a projection iff f ◦ f = f .

Proof. Suppose f ◦ f = f . If x ∈ Im(f) then x = f(y) for some y, so
f(x) = f(f(y)) = f(y) = x. Hence f is a projection. Conversely, if f is a
projection, then for any y ∈ V we have that f(y) ∈ Im(f), so f(f(y)) = f(y).
Since this is true for all y ∈ V we have f ◦ f = f .

Note that if f : V → V is a projection then the image of f is exactly the set
of x ∈ V such that f(x) = x.
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Proof of Proposition 3.2.15. Consider the elements (1A, 0) and (0, 1B) in the
algebra A⊕B. Let’s denote them just by 1A and 1B for brevity. They satisfy
the following relations:

12
A = 1A, 12

B = 1B, 1A1B = 1B1A = 0, 1A⊕B = 1A + 1B

Now let L be any A⊕B-module. So we have linear maps

1A : L→ L

1B : L→ L

By Lemma 3.2.16, both of these linear maps are projections. Let’s define
M = Im(1A), and N = Im(1B). Since 1A is a projection, a vector x ∈ L lies
in M iff 1A(x) = x. Also, for any x ∈ L we have

1A(x) + 1B(x) = 1A⊕B(x) = x

So 1A(x) = x iff 1B(x) = 0, i.e. M is exactly the kernel of 1B. Similarly N
is exactly the kernel of 1A. By Lemma 1.5.5, the vector space L splits as a
direct sum

L = M ⊕N
We claim that both M and N are actually submodules of L. To see this,
suppose x ∈M , i.e. 1A(x) = x. Then for any (a, b) ∈ A⊕B we have

(a, b)(x) = (a, b)1A(x)

= (a, 0)(x)

= 1A(a, 0)(x)

This lies in M , since M is the image of 1A. Therefore M is a submod-
ule. Futhermore, the A ⊕ B-module structure on M is really an A-module
structure, since every element in B acts as zero on M . Similarly, N is a
submodule, and it’s really a B-module.

Example 3.2.17. Let A = C⊕C. Since a C-module is nothing but a vector
space, every A-module is of the form U ⊕ W where U and W are vector
spaces. Conversely, if U and W are any two vector spaces, then U ⊕W is
automatically an A-module. The elements (1, 0) and (0, 1) in A act as the
‘block-diagonal’ linear maps(

1U 0
0 0

)
and

(
0 0
0 1W

)
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Now recall (Example 3.1.6) that we have an isomorphism of algebras

f : C[C2]→ A

sending
e 7→ (1, 1) and g 7→ (1,−1)

Then the inverse isomorphism f−1 sends

(1, 0) 7→ 1

2
(e+ g) and (0, 1) 7→ 1

2
(e− g)

So A-modules are the same thing as C[C2]-modules, i.e. representations
of C2. Therefore, if ρ : C2 → GL(V ) is a representation, there should be a
canonical way to split up V as a direct sum U⊕W of two subrepresentations.
This is true! C2 has exactly two irreps, the trivial irrep U1 and the sign
representation U2. Therefore any representation V of C2 can be decomposed
as V = U ⊕W , where U is a direct sum of copies of U1, and W is a direct
sum of copies of U2.

The linear map ρ(g) acts as 1U on U , since U is a trivial subrepresentation,
and it acts as −1W on W , by the definition of the sign representation (in
other words, U and W are the eigenspaces of ρ(g) with eigenvalues 1 and
−1). Consequently, we have

1

2
(ρ(e) + ρ(g)) =

(
1U 0
0 0

)
and

1

2
(ρ(e)− ρ(g))

(
0 0
0 1W

)
So now we have two points-of-view on this splitting: we can either see it from
Maschke’s Theorem, or from the fact that C[C2] is isomorphic to C⊕ C.

3.3 Matrix algebras

Let V be a vector space. In this section, we’ll study the algebra

AV = Hom(V, V )

If we pick a basis for V then AV becomes an algebra of matrices Matn×n(C),
so we’ll call any algebra of this form a matrix algebra (even if we haven’t
chosen a basis).
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Since there’s only one vector space (up to isomorphism) for each dimension
n, there’s also only one matrix algebra (up to isomorphism) for each n, and
its dimension is n2.

Lemma 3.3.1. AopV is naturally isomorphic to Hom(V ∗, V ∗).

Proof. Use the map

Hom(V, V )→ Hom(V ∗, V ∗)op

f 7→ f ∗ (the dual map)

This is an isomorphism of vector spaces, and it’s also a homomorphism be-
cause (f ◦ g)∗ = g∗ ◦ f ∗.

So AopV is also a matrix algebra, and it’s isomorphic to AV , because V ∗ and V
have the same dimension. But there’s no natural choice of isomorphism, be-
cause there’s no natural isomorphism between V and V ∗. However, if we pick
a basis for V , then V becomes isomorphic to Cn, and so does V ∗, using the
dual basis. Then both Hom(V, V ) and Hom(V ∗, V ∗) become isomorphic to
Matn×n(C). Now the above lemma simply says that we have an isomorphism

Matn×n(C)→ Matn×n(C)op

M 7→MT

This is obviously an isomorphism of vector spaces, and it’s an algebra homo-
morphism because

(MN)T = NTMT

Now we’re going to study the modules over a matrix algebra AV . There’s
one very obvious module, which is the vector space V . This is automatically
a module over AV , because we have a canonical homomorphism

AV → Hom(V, V )

given by the identity map! In other words, we have an action of AV on V
defined by

fv = f(v)

If we pick a basis for V this becomes the action of Matn×n(C) on Cn (the
space of column vectors). We’ll prove shortly that in fact the only possible
AV -modules are direct sums of copies of V , this will be the main result of
this section.
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Lemma 3.3.2. V is a simple AV -module, i.e. it contains no non-trivial
submodules.

Proof. Suppose N ⊂ V is a non-zero submodule, and pick a non-zero vector
x ∈ N . For any y ∈ V , there exists a linear map f ∈ AV that maps x to y
(for example: extend x to a basis for V and define f by mapping x to y and
all other basis vectors to zero). Thus fx = f(x) = y lies in N for all y ∈ V ,
so N = V .

Lemma 3.3.3. Let V be a vector space (of dimension n) and let AV =
Hom(V, V ). Then AV is isomorphic as an AV -module to V ⊕n.

Proof. Pick a basis for V , so AV = Matn×n(C). Then AV acts on itself by
matrix multiplication, and it acts on V ∼= Cn via the action of matrices on
column vectors. Consider the subspace

(AV )•k ⊂ AV

of matrices which are zero except in the kth column, i.e. they look like0 . . . 0 a1 0 . . . 0
...

. . .
...

...
...

. . .
...

0 . . . 0 an 0 . . . 0


Then each (AV )•k is a submodule, and it’s isomorphic to V . Also

AV =
n⊕
k=1

(AV )•k

So we’ve shown that the AV -module AV is isomorphic to a direct sum of
copies of V . Our goal is to prove that every AV -module is isomorphic to a
direct sum of copies of V . Before we can begin the proof, we need to quickly
generalize one more result from Section 1.

Recall (Lemma 1.8.11) that if W is any representation of a group G, and Vreg
is the regular representation, then there is a natural isomorphism of vector
spaces

HomG(Vreg,W ) = W

This fact generalizes to arbitrary algebras:
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Lemma 3.3.4. For any algebra A, and A-module M , there is a natural
isomorphism of vector spaces

HomA(A,M) = M

Proof. This is exactly the same as the proof of Lemma 1.8.11. We use the
map ‘evaluate at 1A’:

T : HomA(A,M) → M
f 7→ f(1A)

The inverse to T is the map

T−1 :M → HomA(A,M)

x 7→ fx

where fx is the A-linear map

fx : a 7→ ax

Corollary 3.3.5. For any AV -module M , we have

dimM = nk

where k = dim HomA(V,M).

Proof. By Lemma 3.3.4 and Lemma 3.3.3 we have isomorphisms of vector
spaces

M ∼= HomA(A,M) ∼= HomA(V ⊕n,M) ∼= HomA(V,M)⊕n

Theorem 3.3.6. Let M be any AV -module. Then we have an isomorphism
of AV -modules

M = V ⊕k

where k = dim HomAV (V,M).
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This is one of the most difficult results in this course. We’re going to give two
proofs, the first one is more elegant, the second one is quicker and messier.

First proof of Theorem 3.3.6. Corollary 3.3.5 says that M and V ⊕k have the
same dimension and hence are isomorphic as vector spaces, but we need to
prove that they’re isomorphic as AV -modules.

Let {f1, ..., fk} be a basis for HomAV (V,M), and let

F = (f1, . . . , fk) ∈ HomAV (V,M)⊕k = HomAV (V ⊕k,M)

So F is a homomorphism of AV -modules from V ⊕k to M . We want to prove
that F is an isomorphism, and in fact it’s sufficient to prove that it’s an
injection, because both modules have the same dimension.

Consider the maps
F≤l = (f1, ..., fl) : V ⊕l →M

where 1 ≤ l ≤ k. We’re going to prove, by induction, that each map F≤l is
an injection. Since F = F≤k, this will prove the theorem.

(i) First we need to show that F≤1 = f1 : V → M is an injection. The
kernel of f1 is a submodule of V , but V is a simple module (Lemma
3.3.2) and f1 is not the zero map, so we must have Ker(f1) = {0}. So
F≤1 is indeed an injection. Note that the same argument shows that
each map fi : V →M must be an injection.

(ii) Take 1 ≤ l < k, and assume (for the inductive step) that

F≤l : V ⊕l →M

is an injection. Let N≤l ⊂M be the image of this map, it’s a submodule
of M which is isomorphic to V ⊕l. Now let Nl+1 ⊂ M be the image of
the map fl+1 : V → M . By part (i), Nl+1 is a submodule which is
isomorphic to V . Suppose that

N≤l ∩Nl+1 6= {0} (1)

The intersection of any two submodules is a submodule (this follows
immediately from the definition of a submodule), so N≤l ∩ Nl+1 is a
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submodule of Nl+1. But Nl+1
∼= V is a simple AV -module, so we must

have
N≤l ∩Nl+1 = Nl+1

i.e. Nl+1 is contained inN≤l. This implies that fl+1 defines an AV -linear
map

fl+1 : V → N≤l

Each of the maps f1, ..., fl also defines an AV -linear map from V to F≤l,
so we have a subset

{f1, ..., fl+1} ⊂ HomAV (V,N≤l)

of size l + 1. However, the dimension of this space is

dim HomAV (V,N≤l) = dim HomAV (V, V ⊕l) (by the inductive hypothesis)

= dim HomAV (V, V )⊕l = l

by Schur’s Lemma (Proposition 3.2.12). Therefore the maps f1, ..., fl+1

cannot be linearly independent, which contradicts the fact that {f1, ..., fk}
is a basis for HomAV (V,M). We conclude that (1) is impossible, and
actually N≤l ∩Nl+1 = {0}.
The image of the map

F≤l+1 : V ⊕l+1 →M

is a submodule of M , and it’s spanned by the two submodules N≤l and
Nl+1. Since these have trivial intersection, it follows that

Im(F≤l+1) ∼= N≤l ⊕Nl+1
∼= V ⊕l ⊕ V

So F≤l+1 is an isomorphism onto its image, i.e. it’s an injection. This
proves the inductive step and completes the proof of theorem.

Second proof of Theorem 3.3.6. We use the same AV -linear map

F : V ⊕k →M
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as in the first proof above. This time, we’re going to prove that F is a
surjection.

Pick any x ∈ M . We need to show that x is in the image of F . Under the
isomorphism between M and HomAV (AV ,M), the vector x corresponds to
the AV -linear map

Tx : AV →M

a 7→ ax

In particular, Tx(1A) = x. Now pick a basis for V , so we can identify V ∼= Cn

(the space of column vectors). We can also identify AV = Matn×n(C), and
we have AV -linear injections

ιt : V → AV

given by mapping Cn to the space (AV )•t of matrices which are zero outside
the tth column. Let e1, ..., en be the standard basis for Cn, then

n∑
t=1

ιt(et) =


1 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1

 = In = 1AV

So

Tx

(
n∑
t=1

ιt(et)

)
=

n∑
t=1

(Tx ◦ ιt)(et) = x ∈M

Now each map Tx ◦ ιt is in HomAV (V,M), so it can be written as a linear
combination of the basis vectors

Tx ◦ ιt = λ1tf1 + . . .+ λkt fk

for some coefficients λit ∈ C. Therefore

x =
n∑
t=1

(Tx ◦ ιt)(et) =
n∑
t=1

k∑
i=1

λitfi(et)

=
k∑
i=1

fi

(
n∑
t=1

λitet

)
= F

(
n∑
t=1

λ1t et, . . . ,

n∑
t=1

λkt et

)
So F is indeed surjective.
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[Aside: What we’ve actually proved is that M is isomorphic as an AV -module
to

V ⊗ HomAV (V,M)

where we give the latter an AV -module structure by letting AV act only on
the V factor.]

So up to isomorphism, there is one AV -module

V, V ⊕2, . . . , V ⊕k, . . .

for each positive integer k. This is similar to the situation for vector spaces
(= C-modules), up to isomorphism there’s one vector space

C, C2, . . . , Ck, . . .

for each k. This similarity goes further. Since V is simple (Lemma 3.3.2),
we have

HomAV (V, V ) = C = Hom(C,C)

by Schur’s Lemma (Proposition 3.2.12). How about HomAV (V ⊕2, V ⊕2)? We
have

HomAV (V ⊕2, V ⊕2) = HomAV (V, V )⊕4

i.e. to specify an AV -linear map f : V ⊕2 → V ⊕2 we have to give four maps
f11, f12, f21, f22 ∈ HomAV (V, V ). Then

f(x1, x2) = (f11(x1) + f12(x2), f21(x1) + f22(x2))

But each fji ∈ HomAV (V, V ) is just a complex number, so we can write the
above formula as

f(x1, x2) =

(
f11 f12
f21 f22

)(
x1
x2

)
Writing it this way, it should be clear that the composition of two AV -linear
maps from V ⊕2 to V ⊕2 is given by multiplying together the two corresponding
2× 2-matrices. So we have an isomorphism of algebras

HomAV (V ⊕2, V ⊕2) ∼= Mat2×2(C) = Hom(C2,C2)

(we’ll prove this more carefully in the next section). More generally:

HomAV (V ⊕k, V ⊕l) = Matl×k(C)

= Hom(Ck,Cl)
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and composition of maps corresponds to matrix multiplication.

So AV -modules match up with C-modules, and AV -linear maps match up
with C-linear maps. Technically, this is called an equivalence of cate-
gories. We say that AV and C are Morita equivalent.

3.4 Semi-simple algebras

Definition 3.4.1. An A-module M is semi-simple if it’s isomorphic to a
direct sum of simple A-modules.

This was not an important concept for representations of groups. This is
because, thanks to Maschke’s Theorem, every representation of a group is
semi-simple. But for general algebras, this is not true.

Example 3.4.2. Let A = 〈1, x〉 with x2 = 0. Let M be the A-module given
by A itself. Let’s look for 1-dimensional submodules of M , i.e. subspaces

〈λ+ µx〉 ⊂ A

that are preserved under left-multiplication by all elements of A. We must
have

x(λ+ µx) = λx ∈ 〈λ+ µx〉
So λ = 0, and hence the subspace 〈x〉 is the only 1-dimensional submodule.
So M is not simple (it contains a 1-dimensional submodule), but also it
doesn’t split up as a sum of a direct sum of simples, so M is not semi-simple
either.

Proposition 3.4.3. If M is a semi-simple module, then its decomposition
into simple A-modules is unique, up to isomorphism and re-ordering of the
summands.

Proof. This is a generalisation of Theorem 1.8.6, and the proof is exactly the
same. If N is any simple module, then dim HomA(N,M) is the multiplicity
with which N occurs in M .

Definition 3.4.4. An algebra A is semi-simple if every A module is semi-
simple.
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So C[G] is semi-simple for any finite group, but Example 3.4.2 shows that
the algebra 〈1, x〉 is not semi-simple.

By Theorem 3.3.6, the matrix algebra AV = Hom(V, V ) is semi-simple, be-
cause every AV -module is a direct sum of copies of the simple AV -module
V .

Theorem 3.4.5 (Classification of semi-simple algebras). Let A be an algebra.
The following are equivalent:

(i) A is semi-simple.

(ii) The A-module A is a semi-simple module.

(iii) A is isomorphic to a direct sum of matrix algebras.

[Aside: This is over C. It can be generalised to other fields but the statement
becomes more complicated.]

Notice that (i) ⇒ (ii) by definition. The fact that (iii) ⇒ (i) folllows imme-
diately from the following:

Lemma 3.4.6. If A and B are semi-simple algebras then so is A⊕B.

Proof. By Lemma 3.2.15 every module over A⊕B is a direct sum M⊕N for
an A-module M and a B-module N . If A and B are semi-simple, we have
further splittings

M = M1 ⊕ . . .⊕Mk

N = N1 ⊕ . . .⊕Nl

where the Mi are simple A-modules and the Nj are simple B-modules. But
then each Mi and Nj is a simple A ⊕ B module, so M ⊕ N is semi-simple.
So every (A⊕B)-module is semi-simple.

Every matrix algebra is semi-simple, so this proves that (iii)⇒(i) in Theorem
3.4.5. The hardest part of the theorem is the fact that (ii)⇒ (iii). We’ll prove
it in stages.
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Lemma 3.4.7. For any algebra A, there is a natural isomorphism of algebras

Aop = HomA(A,A)

Proof. We know (Lemma 3.3.4) that for any A-module M there is a natural
isomorphism of vector spaces

T : HomA(A,M)→M

f 7→ f(1A)

Setting M = A, we get an isomorphism of vector spaces

T : HomA(A,A)→ A

We have
T (f) = f(1A) = f(1A)1A

and therefore

T (g ◦ f) = (g ◦ f)(1A) = g(f(1A)) = f(1A)g(1A)

since g is A-linear. This says that T is a homomorphism from HomA(A,A)
to Aop.

Lemma 3.4.8. For any algebra A, and any simple A-module M , we have
an isomorphism of algebras

HomA(M⊕k,M⊕k) ∼= Matk×k(C)

We saw a rough argument for this in the previous section, in the case that
A = AV and M = V .

Proof. Let eji be the matrix that maps ei to ej, i.e. the (ij)-th entry is 1
and all other entries are zero. These matrices form a basis for Matk×k(C) (in
fact they’re the standard basis), and they obey the relations

ejiepq =

{
ejq if i = p
0 if i 6= p
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Now let

πi : M⊕k →M

ιj : M →M⊕k

be projection onto on the ith factor and inclusion of the jth factor respec-
tively, and define

fji = ιj ◦ πi : M⊕k →M⊕k

These maps are evidently linearly independent, and obey the same relations
as the eji.

We define a linear map from Matk×k(C) to HomA(M⊕k,M⊕k) by sending eji
to fji. This map is injective because the fji are linearly-independent, and
it’s an algebra homomorphism because it respects the relations between the
eji. So it must be an isomorphism, because

dim HomA(M⊕k,M⊕k) = dim HomA(M,M)⊕k
2

= k2 = dim Matk×k(C)

by Schur’s Lemma.

Now we can finish the proof of the theorem.

Proof of Theorem 3.4.5(ii)⇒(iii). Assume A is a semi-simple A-module. So
we have an isomorphism of A-modules

A = M⊕m1
1 ⊕ . . .⊕M⊕mk

k

for some numbers m1, . . . ,mk where each Mi is a simple module, and Mi is
not isomorphic to Mj for i 6= j. Then by Lemma 3.4.7,

Aop = HomA(A,A)

=
⊕
i,j

HomA(M⊕mi
i ,M

⊕mj
j )

= HomA(M⊕m1
1 ,M⊕m1

1 )⊕ . . .⊕ HomA(M⊕mk
k ,M⊕mk

k )

by Schur’s Lemma. By Lemma 3.4.8 we have

HomA(M⊕mi
i ,M⊕mi

i ) = Matmi×mi(C)
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So
Aop = Matm1×m1(C)⊕ . . .⊕Matmk×mk(C)

and thus
A = Matm1×m1(C)op ⊕ . . .⊕Matmk×mk(C)op

But each Matmi×mi(C)op is a matrix algebra by Lemma 3.3.1.

This completes the proof of Theorem 3.4.5.

If we look at the proof of the theorem again, we see we can actually make
some more precise statements, which we list as the following corollaries.

Corollary 3.4.9. Let A be a semi-simple algebra. Then A has only finitely-
many simple modules up to isomorphism.

Proof. We know A is isomorphic to

Hom(V1, V1)⊕ . . .⊕ Hom(Vr, Vr)

for some vector spaces V1, . . . , Vr. Each Vi is a simple Hom(Vi, Vi)-module,
and hence is also a simple A-module. By Lemma 3.2.15 and Theorem 3.3.6,
every A-module is a direct sum of copies of these r simple modules. In
particular, V1, . . . , Vr are the only simple A-modules.

Corollary 3.4.10. Let A be a semi-simple algebra and let the simple A-
modules be M1, . . . ,Mr, where Mi has dimension di. Then

(i) A is isomorphic as an A-module to

M⊕d1
1 ⊕ . . .⊕M⊕dr

r

(ii) A is isomorphic as an algebra to

Matd1×d1(C)⊕ . . .⊕Matdr×dr(C)

Proof. Since A is semi-simple, A is isomorphic as an A-module to

r⊕
i=1

M⊕mi
i
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for some numbers m1, . . . ,mr. We observed in the proof of Theorem 3.4.5
((ii)⇒(iii)) that this implies that A is isomorphic as an algebra to

r⊕
i=1

Matmi×mi(C)

But then there are r simple A-modules with dimensions m1, . . . ,mr, i.e. we
must have di = mi for all i. This proves (i) and (ii).

Corollary 3.4.11. Let A be semi-simple, and let the dimensions of the sim-
ple A-modules be d1, . . . , dr. Then

dimA =
r∑
i=1

d2i

Proof. Immediate from Corollary 3.4.10(ii).

Our favourite example of a semi-simple algebra is a group algebra. Setting
A = C[G] in the above results, we recover Theorem 1.8.8, Corollary 1.8.9
and Corollary 1.8.12 as special cases. But we also have a new result, which
is a special case of Corollary 3.4.10(ii):

Corollary 3.4.12. Let G be a group, and let d1, . . . , dr be the dimensions of
the irreps of G. Then C[G] is isomorphic as an algebra to

Matd1×d1(C)⊕ . . .⊕Matdr×dr(C)

As we’ve stated it, this result only tells us that such an isomorphism exists,
it doesn’t tell us how to write one down. In the case G = C2, we actually
found an isomorphism

C[C2]
∼−→ C⊕ C

explicitly (and the case G = C3 is in the Problem Sheets). In fact with just
a little more work we can see how to find this isomorphism more explicitly
for a general G.

Proposition 3.4.13. Let A be semi-simple, and let M1, ...,Mr be the simple
A-modules. Let

ρ̃i : A→ Hom(Mi,Mi)
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be the module structure maps for each simple module, and let

ρ̃ = (ρ̃1, ..., ρ̃r) : A→ Hom(M1,M1)⊕ ...⊕ Hom(Mr,Mr)

Then ρ̃ is an isomorphism of algebras.

This proposition is a more precise version of Corollary 3.4.10(ii).

Proof. Firstly, suppose A is a matrix algebra AV . There is only simple AV -
module, namely the vector space V (with its canonical AV -module structure).
Then the proposition claims that the map

ρ̃ : AV → Hom(V, V )

is an isomorphism, which is certainly true, since this map is actually the
identity! More generally, suppose that A is a direct sum of matrix algebras,
A = AV1⊕ ...⊕AVr . Then A has r simple modules, given by the vector spaces
V1, ..., Vr. So the map ρ̃ is again the identity map

ρ̃ : A→ Hom(V1, V1)⊕ ...⊕ Hom(Vr, Vr)

so it’s an isomorphism. But every semi-simple algebra is isomorphic to a
direct sum of matrix algebras, so the proposition is true.

Corollary 3.4.14. Let G be a group, and let

ρi : G→ Hom(Ui, Ui)

be the irreps of G. Let

ρ̃i : C[G]→ Hom(Ui, Ui)

be the linear extension of ρi, and let

ρ̃ = (ρ̃1, . . . , ρ̃r) : C[G]→
r⊕
i=1

Hom(Ui, Ui)

Then ρ̃ is an isomorphism of algebras.
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Example 3.4.15. Let G = S3 = 〈σ, τ | σ3 = τ 2 = e, στ = τσ2〉. G has three
irreps of dimensions 1, 1 and 2, so we have an isomorphism

C[G]
∼−→ C⊕ C⊕Mat2×2(C)

σ 7→
(

1, 1,

(
ω 0
0 ω−1

))
τ 7→

(
1,−1,

(
0 1
1 0

))
(where ω = e

2πi
3 ).

There’s a nicer way to write this. We can view Matn×n(C)⊕Matm×m(C) as
a subalgebra of Mat(n+m)×(n+m)(C) consisting of block-diagonal matrices(

∗ 0
0 ∗

)
So in the above example, we have a homomorphism

C[G]→ Mat4×4(C)

σ 7→


1 0 0 0
0 1 0 0
0 0 ω 0
0 0 0 ω−1



τ 7→


1 0 0 0
0 −1 0 0
0 0 0 1
0 0 1 0


which is an isomorphism onto the subalgebra of block-diagonal matrices (with
blocks of sizes 1, 1, and 2). Of course, this is just the matrix representation
corresponding to U1 ⊕ U2 ⊕ U3.

3.5 Centres of algebras

Definition 3.5.1. Let A be an algebra. The centre of A is the subspace

ZA = {z ∈ A | za = az, ∀a ∈ A}
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ZA is a subalgebra of A, and it’s commutative. Obviously ZA = A iff A is
commutative.

Proposition 3.5.2. Let V be a vector space, and AV = Hom(V, V ). Then

ZA = {λ1V | λ ∈ C}

so ZA is the 1-dimensional algebra.

Proof. Pick a basis for V , so AV = Matn×n(C). Then the statement is that
the only matrices that commute with all other matrices are λIn for λ ∈ C.
This is easy to check.

Corollary 3.5.3. Let A be a semi-simple algebra. Then ZA is isomorphic
(as an algebra) to C⊕r, where r is the number of simple A-modules.

Proof. By Proposition 3.4.13, A is isomorphic to a direct sum of matrix
algebras AM1 ⊕ ... ⊕ AMr , where M1, ...,Mr are the simple A-modules. It’s
elementary to check that ZA1⊕A2 = ZA1 ⊕ ZA2 for any two algebras A1 and
A2, and the result follows.

Now let A = C[G] for a group G. If g ∈ G is in the centre of G (i.e. it
commutes with all other group elements), then clearly λg ∈ A lies in ZA for
any λ ∈ C. However, ZA is usually larger than this.

Proposition 3.5.4. Let A = C[G]. Then ZA ⊂ A is spanned by the elements

z[g] =
∑
h∈[g]

h ∈ A

for each conjugacy class [g] in G.

Proof. Let G = {g1, . . . , gk}, so a general element of C[G] looks like

a = λg1g1 + . . . λgkgk

for some λg1 , . . . , λgk ∈ C. Then a is in ZA iff

ag = ga ⇐⇒ g−1ag = a
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for all g ∈ G. This holds iff

λggig−1 = λgi

for all g and gi in G, i.e. iff

a =
∑

conjugacy classes
[g] in G

λ[g]z[g]

for some scalars λ[g] ∈ C.

The elements z[g] are obviously linearly independent, so dimZC[G] is the num-
ber of conjugacy classes in G. If we identify C[G] with CG by sending

g ↔ δg

then the element z[g] maps to δ[g], and ZC[G] corresponds exactly to the space
of class functions

CG
cl ⊂ CG

We are finally in a position to explain the proof of Theorem 2.3.3, that for
any group G

#{conjugacy classes in G} = #{irreps of G}

Proof of Theorem 2.3.3. Let U1, . . . , Ur be the irreps of G. Then we know
from Corollary 3.4.14 that we have an isomorphism of algebras

ρ̃ : C[G]→ AU1 ⊕ ...⊕ AUr
By Corollary 3.5.3 this means that ZC[G] is isomorphic to C⊕r, and in par-
ticular that dimZC[G] = r. Since dimZC[G] is also the number of conjugacy
classes in G, this proves the theorem.

A Revision on linear maps and matrices

This appendix contains some brief revision material on the relationship be-
tween matrices and linear maps.
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A.1 Vector spaces and bases

We let Cn be the set of column vectors
λ1
λ2
...
λn

 , λi ∈ C

This is a vector space of dimension n (over C). It comes with its standard
basis e1, e2, ..., en, where ei is the column vector in which λi = 1 and all the
other λj are zero. We can write the column vector above as

∑n
i=1 λiei.

Now let V be an abstract n-dimensional vector space (over C).

Proposition A.1.1. Choosing a basis for V is the same thing as choosing
an isomorphism

f : Cn ∼−→ V

Proof. Suppose we’ve chosen such an isomorphism f . Then the images of the
standard basis vectors under f give us a basis for V . Conversely, suppose
a1, ..., an ∈ V is a basis. Define a linear map f : Cn → V by mapping ei to
ai, and then extending linearly. Then f is an isomorphism, because every
vector v ∈ V can be uniquely expressed as a linear combination

v = λ1a1 + λ2a2 + ...+ λnan

A.2 Linear maps and matrices

Proposition A.2.1. Linear maps from Cn to Cm are the same thing as
m× n matrices (with complex coefficients).

Proof. Each matrix M ∈ Matm×n(C) defines a linear map

φ : Cn → Cm
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by multiplying column vectors by M (on the left). Notice that the image
φ(ei) of the ith standard basis vector is the column vector which forms the
ith column of M .

Conversely, suppose φ : Cn → Cm is any linear map. Let M ∈ Matm×n(C)
be the matrix whose columns are the vectors φ(e1), φ(e2), ..., φ(en), i.e.

φ(ei) =
m∑
j=1

Mjiẽj

where ẽ1, ..., ẽm is the standard basis for Cm. Then for any column vector

v =
n∑
i=1

λiei ∈ Cn

we have

φ(v) =
n∑
i=1

λiφ(ei) =
n∑
i=1

λi

(
m∑
j=1

Mjiẽj

)
=

m∑
j=1

(
n∑
i=1

Mjiλi

)
ẽj

so the linear map φ is exactly multiplication by the matrix M .

Corollary A.2.2. Let V and W be abstract vector space of dimensions n
and m respectively. Choose a basis A = {a1, ..., an} for V , and a basis
B = {b1, ..., bm} for W . Then we have a bijection between the set of linear
maps from V to W and the set of m× n matrices.

Proof. Because we’ve chosen bases for V and W , we have corresponding
isomorphims

fA : Cn ∼−→ V, fB : Cm ∼−→ W

by Proposition A.1.1. Let
ϕ : V → W

be a linear map. Then the composition

φ = f−1B ◦ ϕ ◦ fA
is a linear map from Cn to Cm, so it has a corresponding matrix M . Con-
versely, any matrix M ∈ Matm×n defines a linear map φ : Cn → Cm, and
hence a linear map

ϕ = fB ◦ φ ◦ f−1A : V → W

Clearly this gives a bijection between linear maps and matrices.
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Let’s make this bijection between linear maps and matrices more explicit.
Consider the diagram:

V W

Cn Cm

ϕ

fA

φ

fB

By the definition of the matrix M , we have

φ(ei) =
m∑
j=1

Mjiẽj

Thus

ϕ(ai) = ϕ(fA(ei)) = fB(φ(ei))

= fB

(
m∑
j=1

Mjiẽj

)
=

m∑
j=1

MjifB(ẽj)

=
m∑
j=1

Mjibj

So the ith column of M is the image of the basis vector ai, expressed as a
column vector using the basis B.

Proposition A.2.3. Let φ : Cn → Cm be a linear map with corresponding
matrix M , and let ψ : Cm → Cp be a linear map with corresponding matrix
N . Then the composition ψ ◦ φ corresponds to the matrix product NM .

Proof. We have

φ(ei) =
m∑
j=1

Mjiẽj, ψ(ẽj) =

p∑
k=1

Nkj êk
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where ê1, ..., êp is the standard basis for Cp. Therefore

(ψ ◦ φ)(ei) = ψ

(
m∑
j=1

Mjiẽj

)
=

m∑
j=1

Mjiψ(ẽj)

=
m∑
j=1

Mji

(
p∑

k=1

Nkj êk

)
=

p∑
k=1

(
m∑
j=1

NkjMji

)
êk

=

p∑
k=1

(NM)kiêk

So the matrix NM corresponds to ψ ◦ φ.

A.3 Changing basis

Let V be an n-dimensional vector space, and let A = {a1, ..., an} ⊂ V and
C = {c1, ..., cn} ⊂ V be two different possible bases for V . Then by Proposi-
tion A.1.1 we have isomorphisms

V

Cn Cn

fA fC

f−1
A ◦fC

The composition f−1A ◦ fC is an isomorphism from Cn to Cn, so it correponds
to some invertible n × n matrix P . We’ll call P the change-of-basis matrix
between A and C. Note that

ci = fC(ei) = fA(f−1A ◦ fC(ei)) = fA

(
n∑
j=1

Pjiej

)

=
n∑
j=1

PjifA(ej) = P1ia1 + P2ia2 + ...+ Pnian

i.e. the entries of P tell you the coefficients of the vectors in the second basis
C, expressed using the first basis A.
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In particular, suppose that V is actually Cn, and that A = {e1, ..., en} is the
standard basis (so fA is the identity map). Then the columns of P are the
vectors that form the second basis C. This gives a bijection between the set
of possible bases for Cn and the set of invertible n× n matrices.

Now let V and W be two vector spaces, of dimensions n and m respectively.
In Corollary A.2.2 we saw that linear maps from V and W corresponded to
n × m matrices, after we’d chosen bases for V and W . For a given linear
map ϕ, the matrix that we write down depends on our choice of bases, and
if we change our choice of bases then the matrix that represents ϕ will also
change.

Proposition A.3.1. Let V and W be two vector spaces of dimensions n and
m respectively, and let

ϕ : V → W

be a linear map. Let A be a basis for V and B be a basis for W , and let

M ∈ Matn×n(C)

be the matrix representing ϕ with respect to the bases A and B. Now let C be
a second choice of basis for V , and let N be the matrix representing ϕ with
respect to the bases C and B. Then

N = MP

where P is the change-of-basis matrix between A and C.

Proof. Examine the following diagram:

Cn

V W Cm

Cn

f−1
A ◦fC

fC

f−1
B ◦ϕ◦fC

ϕ fB

fA

f−1
B ◦ϕ◦fA

We have
(f−1B ◦ ϕ ◦ fC) = (f−1B ◦ ϕ ◦ fA) ◦ (f−1A ◦ fC)
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These three linear maps correspond to the matrices N , M and P respectively,
so

N = MP

by Proposition A.2.3.

Now suppose that D is a second choice of basis for W , and let Q be the
change-of-basis matrix between B and D. A very similar proof shows that
the matrix representing ϕ with respect to the bases A and D is

Q−1M

and that the matrix representing ϕ with respect to C and D is

Q−1MP

Now let’s specialize to the case that W and V are actually the same vector
space:

Corollary A.3.2. Let V be an n-dimensional vector space.

i) If we choose a basis A for V , then we get a bijection between Matn×n(C)
and the set of linear maps from V to V .

ii) Let
ϕ : V → V

be a linear map, and let M be the matrix representing ϕ with respect
to the basis A. Now let C be another basis for V , and let P be the
change-of-basis matrix between A and C. Then the matrix representing
ϕ with respect to the basis C is

P−1MP
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